Statistics of resonances in one-dimensional continuous systems

被引:5
|
作者
Feinberg, Joshua [1 ,2 ]
机构
[1] Univ Haifa, Dept Phys, IL-36006 Tivon, Israel
[2] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PRAMANA-JOURNAL OF PHYSICS | 2009年 / 73卷 / 03期
基金
以色列科学基金会;
关键词
Resonances; spectral determinant; disordered systems; Fokker-Planck equation; average density of resonances; RANDOM-MATRIX THEORY; RANDOM-MEDIA;
D O I
10.1007/s12043-009-0108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 50 条