Dynamics of the Nonlinear Timoshenko System with Variable Delay

被引:16
|
作者
Yang, Xin-Guang [1 ]
Zhang, Jing [2 ]
Lu, Yongjin [2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USA
基金
美国国家科学基金会;
关键词
Timoshenko system; Variable delay; Quasi-stability; Unstable manifold; Exponential attractor; ENERGY DECAY-RATES; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; BEAM SYSTEM; 2ND SOUND; BOUNDARY; THERMOELASTICITY; STABILIZATION; CATTANEO; BEHAVIOR;
D O I
10.1007/s00245-018-9539-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the wellposedness of global solution and existence of global attractor to the nonlinear Timoshenko system subject to continuous variable time delay in the angular rotation of the beam filament. The waves are assumed to propagate under the same speed in the transversal and angular direction. A single mechanical damping is implemented to counter the destabilizing effect from the time delay term. By imposing appropriate assumptions on the damping term and sub-linear time delay term, we prove the existence of absorbing set and establish the quasi-stability of the gradient system generated from the solution to the system of equation. The quasi-stability property in turn implies the existence of finite dimensional global and exponential attractors that contain the unstable manifold formed from the set of equilibria.
引用
收藏
页码:297 / 326
页数:30
相关论文
共 50 条
  • [31] WELL-POSEDNESS AND EXPONENTIAL STABILITY FOR A LINEAR DAMPED TIMOSHENKO SYSTEM WITH SECOND SOUND AND INTERNAL DISTRIBUTED DELAY
    Apalara, Tijani A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [32] A stability result of a Timoshenko beam system with a delay term in the internal fractional feedback
    Aounallah, Radhouane
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (02)
  • [33] General Decay for a Timoshenko-type System for Thermoelasticity of Type III with Delay, Past History and Distributed Delay
    Hamida, Salim
    Zitouni, Salah
    Ouchenane, Djamel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [34] On a Timoshenko system with thermal coupling on both the bending moment and the shear force
    Alves, M. O.
    Caixeta, A. H.
    Silva, M. A. Jorge
    Rodrigues, J. H.
    Almeida Junior, D. S.
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 295 - 320
  • [35] Stabilization of a type III thermoelastic Timoshenko system in the presence of a time-distributed delay
    Fareh, Abdelfeteh
    Messaoudi, Salim A.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 1017 - 1032
  • [36] GLOBAL AND EXPONENTIAL ATTRACTORS FOR A NONLINEAR POROUS ELASTIC SYSTEM WITH DELAY TERM
    Dos Santos, Manoel J.
    Feng, Baowei
    Almeida Junior, Dilberto S.
    Santos, Mauro L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (05): : 2805 - 2828
  • [37] SINGULAR LIMITS AND DYNAMICS FOR THE ABSTRACT TIMOSHENKO SYSTEM
    Freitas, Mirelson M.
    Dos Santos, Manoel J.
    Almeida Jr, Dilberto S.
    Santos, Mauro L.
    Ramos, Anderson J. A.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (01): : 98 - 115
  • [38] Exponential stability and numerical simulation of a Bresse-Timoshenko system subject to a neutral delay
    Khochemane, Houssem Eddine
    Rezaiguia, Ali
    Zaidi, Hasan Nihal
    AIMS MATHEMATICS, 2023, 8 (09): : 20361 - 20379
  • [39] A stability and numerical study of the solutions of a Timoshenko system with distributed delay
    Nonato, Carlos A.
    Dos Santos, Manoel J.
    Avila, Jorge A. J.
    Raposo, Carlos A.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 2090 - 2108
  • [40] Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms
    Al-Mahdi, Adel M.
    Al-Gharabli, Mohammad M.
    MATHEMATICS, 2023, 11 (03)