Turning cold tumors into hot tumors by improving T-cell infiltration

被引:539
作者
Liu, Yuan-Tong [1 ,2 ]
Sun, Zhi-Jun [1 ,2 ,3 ]
机构
[1] Wuhan Univ, State Key Lab Breeding Base Basic Sci Stomatol Hu, Minist Educ, Sch & Hosp Stomatol, Wuhan, Peoples R China
[2] Wuhan Univ, Key Lab Oral Biomed, Minist Educ, Sch & Hosp Stomatol, Wuhan, Peoples R China
[3] Wuhan Univ, Sch & Hosp Stomatol, Dept Oral Maxillofacial Head Neck Oncol, 237 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
cold tumor; immune checkpoint inhibitors; T-cell infiltration; T-cell priming; nanomedicine; TERTIARY LYMPHOID STRUCTURES; REDUCED CLINICAL BENEFIT; TGF-BETA; RADIATION-THERAPY; IMMUNE EVASION; CANCER IMMUNOTHERAPIES; ACQUIRED-RESISTANCE; ANTITUMOR RESPONSES; DNA-DAMAGE; MELANOMA;
D O I
10.7150/thno.58390
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Immunotherapy, represented by immune checkpoint inhibitors (ICIs), has greatly improved the clinical efficacy of malignant tumor therapy. ICI-mediated antitumor responses depend on the infiltration of T cells capable of recognizing and killing tumor cells. ICIs are not effective in "cold tumors", which are characterized by the lack of T-cell infiltration. To realize the full potential of immunotherapy and solve this obstacle, it is essential to understand the drivers of T-cell infiltration into tumors. We present a critical review of our understanding of the mechanisms underlying "cold tumors", including impaired T-cell priming and deficient T-cell homing to tumor beds. "Hot tumors" with significant T-cell infiltration are associated with better ICI efficacy. In this review, we summarize multiple strategies that promote the transformation of "cold tumors" into "hot tumors" and discuss the mechanisms by which these strategies lead to increased T-cell infiltration. Finally, we discuss the application of nanomaterials to tumor immunotherapy and provide an outlook on the future of this emerging field. The combination of nanomedicines and immunotherapy enhances cross-presentation of tumor antigens and promotes T-cell priming and infiltration. A deeper understanding of these mechanisms opens new possibilities for the development of multiple T cell-based combination therapies to improve ICI effectiveness.
引用
收藏
页码:5365 / 5386
页数:22
相关论文
共 177 条
[1]   PAK4 inhibition improves PD-1 blockade immunotherapy [J].
Abril-Rodriguez, Gabriel ;
Torrejon, Davis Y. ;
Liu, Wei ;
Zaretsky, Jesse M. ;
Nowicki, Theodore S. ;
Tsoi, Jennifer ;
Puig-Saus, Cristina ;
Baselga-Carretero, Ignacio ;
Medina, Egmidio ;
Quist, Michael J. ;
Garcia, Alejandro J. ;
Senapedis, William ;
Baloglu, Erkan ;
Kalbasi, Anusha ;
Cheung-Lau, Gardenia ;
Berent-Maoz, Beata ;
Comin-Anduix, Begona ;
Hu-Lieskovan, Siwen ;
Wang, Cun-Yu ;
Grasso, Catherine S. ;
Ribas, Antoni .
NATURE CANCER, 2020, 1 (01) :46-+
[2]   IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor [J].
Adachi, Keishi ;
Kano, Yosuke ;
Nagai, Tomohiko ;
Okuyama, Namiko ;
Sakoda, Yukimi ;
Tamada, Koji .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :346-+
[3]   The adenosine pathway in immuno-oncology [J].
Allard, Bertrand ;
Allard, David ;
Buisseret, Laurence ;
Stagg, John .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (10) :611-629
[4]   Directing Traffic: How to Effectively Drive T Cells into Tumors [J].
Anandappa, Annabelle J. ;
Wu, Catherine J. ;
Ott, Patrick A. .
CANCER DISCOVERY, 2020, 10 (02) :185-197
[5]   Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma [J].
Andtbacka, Robert H. I. ;
Kaufman, Howard L. ;
Collichio, Frances ;
Amatruda, Thomas ;
Senzer, Neil ;
Chesney, Jason ;
Delman, Keith A. ;
Spitler, Lynn E. ;
Puzanov, Igor ;
Agarwala, Sanjiv S. ;
Milhem, Mohammed ;
Cranmer, Lee ;
Curti, Brendan ;
Lewis, Karl ;
Ross, Merrick ;
Guthrie, Troy ;
Linette, Gerald P. ;
Daniels, Gregory A. ;
Harrington, Kevin ;
Middleton, Mark R. ;
Miller, Wilson H., Jr. ;
Zager, Jonathan S. ;
Ye, Yining ;
Yao, Bin ;
Li, Ai ;
Doleman, Susan ;
VanderWalde, Ari ;
Gansert, Jennifer ;
Coffin, Robert S. .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (25) :2780-U98
[6]   Immunity, inflammation and cancer: a leading role for adenosine [J].
Antonioli, Luca ;
Blandizzi, Corrado ;
Pacher, Pal ;
Hasko, Gyoergy .
NATURE REVIEWS CANCER, 2013, 13 (12) :842-857
[7]   VEGF in Signaling and Disease: Beyond Discovery and Development [J].
Apte, Rajendra S. ;
Chen, Daniel S. ;
Ferrara, Napoleone .
CELL, 2019, 176 (06) :1248-1264
[8]   Prodrug-Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death [J].
Bai, Shuang ;
Yang, Lei-Lei ;
Wang, Yajun ;
Zhang, Tian ;
Fu, Lvqin ;
Yang, Shaochen ;
Wan, Shucheng ;
Wang, Shuo ;
Jia, Die ;
Li, Baosheng ;
Xue, Peng ;
Kang, Yuejun ;
Sun, Zhi-Jun ;
Xu, Zhigang .
SMALL, 2020, 16 (19)
[9]   Cellular abnormalities of blood vessels as targets in cancer [J].
Baluk, P ;
Hashizume, H ;
McDonald, DM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (01) :102-111
[10]   STING: infection, inflammation and cancer [J].
Barber, Glen N. .
NATURE REVIEWS IMMUNOLOGY, 2015, 15 (12) :760-770