Low- and zero-Mach-number models for Rayleigh-Taylor flows

被引:2
作者
Gauthier, Serge [1 ]
Schneider, Nicolas [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, EU, France
关键词
Rayleigh-Taylor instability; Low-Mach-number models; Asymptotic analysis; INSTABILITY; TRANSITION; EQUATIONS; DRIVEN; FLUIDS;
D O I
10.1016/j.compfluid.2017.02.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive low-Mach-number models for the Rayleigh-Taylor instability within asymptotic analysis. In particular, the Sandoval model is derived from the quasi-isobaric model in situations where the Prandtl number is vanishing and the speed of sound and the ratio of specific heats are infinite. Four incompressible-like models are thus available (two low-Mach-number and two zero-Mach-number), the anelastic model for stratification of the order of 1, three models for a vanishing stratification, the quasi isobaric model, the Sandoval model and the Boussinesq approximation for a vanishing Atwood number. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [1] Small Atwood number Rayleigh-Taylor experiments
    Andrews, Malcolm J.
    Dalziel, Stuart B.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916): : 1663 - 1679
  • [2] High-Reynolds number Rayleigh-Taylor turbulence
    Livescu, D.
    Ristorcelli, J. R.
    Gore, R. A.
    Dean, S. H.
    Cabot, W. H.
    Cook, A. W.
    JOURNAL OF TURBULENCE, 2009, 10 (13): : 1 - 32
  • [3] Rayleigh-Taylor instability for incompressible viscous quantum flows
    Chang, Shengchuang
    Duan, Ran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [4] Self-similarity of a Rayleigh-Taylor mixing layer at low Atwood number with a multimode initial perturbation
    Morgan, B. E.
    Olson, B. J.
    White, J. E.
    McFarland, J. A.
    JOURNAL OF TURBULENCE, 2017, 18 (10): : 973 - 999
  • [5] On the Rayleigh-Taylor Instability for Two Uniform Viscous Incompressible Flows
    Jiang, Fei
    Jiang, Song
    Wang, Weiwei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (06) : 907 - 940
  • [6] Compressibility effects in Rayleigh-Taylor instability-induced flows
    Gauthier, S.
    Le Creurer, B.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916): : 1681 - 1704
  • [7] Nonlinear Rayleigh-Taylor Instability of a Cylindrical Interface in Explosion Flows
    Annamalai, Subramanian
    Parmar, Manoj K.
    Ling, Yue
    Balachandar, S.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (06):
  • [8] Effect of shear on Rayleigh-Taylor mixing at small Atwood number
    Akula, Bhanesh
    Andrews, Malcolm J.
    Ranjan, Devesh
    PHYSICAL REVIEW E, 2013, 87 (03)
  • [9] Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one
    Boffetta, G.
    Mazzino, A.
    Musacchio, S.
    Vozella, L.
    PHYSICS OF FLUIDS, 2010, 22 (03) : 1 - 8
  • [10] Compressibility effects in Rayleigh-Taylor flows: influence of the stratification
    Gauthier, S.
    PHYSICA SCRIPTA, 2013, T155