Competition between axial and cubic anisotropies in Heisenberg spin glasses

被引:1
作者
Domanski, Z
机构
[1] Institute of Theoretical Physics, University of Lausanne
来源
PHYSICAL REVIEW B | 1997年 / 55卷 / 09期
关键词
D O I
10.1103/PhysRevB.55.5827
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An infinite-range quantum Heisenberg spin glass with uniaxial (D) and cubic (K) anisotropies is studied using the thermo-held-dynamic method. Mean-field theory phase diagrams in the temperature-anisotropy plane (T,D) for quantum spins S = 2 and S = 5/2 are presented for different values of K. Generally, for integer spin values and large anisotropy D a condensation into a nonmagnetic spin state occurs, accompanied by the destruction of the spin-glass order as indicated by the finite critical value D-c(T=0). For half-integer S and sufficiently low temperature, the spin-glass phase persists for arbitrary D and K. In both cases the presence of a cubic term induces complicated crossovers from longitudinal to transverse freezing of spins.
引用
收藏
页码:5827 / 5832
页数:6
相关论文
共 41 条
[1]   HEISENBERG, XY, AND ISING SPIN-GLASS BEHAVIOR IN HEXAGONAL METALLIC SYSTEMS [J].
ALBRECHT, H ;
WASSERMANN, EF ;
HEDGCOCK, FT ;
MONOD, P .
PHYSICAL REVIEW LETTERS, 1982, 48 (12) :819-822
[2]   RARE-EARTH SPIN-GLASSES WITH UNIAXIAL ANISOTROPY [J].
BABERSCHKE, K ;
PUREUR, P ;
FERT, A ;
WENDLER, R ;
SENOUSSI, S .
PHYSICAL REVIEW B, 1984, 29 (09) :4999-5006
[3]   THEORY OF ORIENTATIONAL GLASSES MODELS, CONCEPTS, SIMULATIONS [J].
BINDER, K ;
REGER, JD .
ADVANCES IN PHYSICS, 1992, 41 (06) :547-627
[4]   FLUCTUATION-INDUCED TRICRITICAL POINTS [J].
BLANKSCHTEIN, D ;
AHARONY, A .
PHYSICAL REVIEW B, 1983, 28 (01) :386-401
[5]   CROSSOVER FROM FLUCTUATION-DRIVEN CONTINUOUS TRANSITIONS TO 1ST-ORDER TRANSITIONS [J].
BLANKSCHTEIN, D ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1981, 47 (06) :439-442
[6]   REPLICA THEORY OF QUANTUM SPIN-GLASSES [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (24) :L655-L660
[7]   THE QUANTUM HEISENBERG S=1 SPIN-GLASS MODEL WITH UNIAXIAL ANISOTROPY [J].
BUTTNER, G ;
USADEL, KD .
EUROPHYSICS LETTERS, 1991, 14 (02) :165-168
[8]   STABILIZATION OF THE ORIENTATIONAL GLASS PHASE BY CUBIC ANISOTROPY [J].
CARMESIN, HO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (03) :297-309
[9]   INSTABILITIES OF AN M-VECTOR SPIN-GLASS IN A FIELD [J].
CRAGG, DM ;
SHERRINGTON, D ;
GABAY, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :158-161
[10]   STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL [J].
DEALMEIDA, JRL ;
THOULESS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :983-990