A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

被引:4
作者
Li, G. D. [1 ]
Chang, P. C. [1 ]
Chen, H. Y. [2 ]
Chiang, W. Y. [1 ]
Fan, C. T. [2 ]
Lin, P. N. [1 ]
Kao, S. H. [1 ]
Lin, Y. N. [1 ]
Huang, Y. J. [1 ]
Barnett, L. R. [1 ]
Chu, K. R. [1 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[2] Wave Power Technol, Zhunan, Miaoli, Taiwan
关键词
EFFICIENCY ENHANCEMENT; HIGH-POWER; GUIDE; MECHANISMS; BEHAVIOR; TWT;
D O I
10.1063/1.4934996
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up-or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 41 条
[1]   ABSOLUTE INSTABILITY COMPETITION AND SUPPRESSION IN A MILLIMETER-WAVE GYROTRON TRAVELING-WAVE TUBE [J].
BARNETT, LR ;
CHANG, LH ;
CHEN, HY ;
CHU, KR ;
LAU, WK ;
TU, CC .
PHYSICAL REVIEW LETTERS, 1989, 63 (10) :1062-1065
[2]   Experimental demonstration of a W-band gyroklystron amplifier [J].
Blank, M ;
Danly, BG ;
Levush, B ;
Latham, PE ;
Pershing, DE .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4485-4488
[3]   Large-Orbit Gyrotron Operation in the Terahertz Frequency Range [J].
Bratman, V. L. ;
Kalynov, Yu. K. ;
Manuilov, V. N. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[4]   Stability and tunability of the gyrotron backward-wave oscillator [J].
Chang, T. H. ;
Fan, C. T. ;
Pao, K. F. ;
Chu, K. R. ;
Chen, S. H. .
APPLIED PHYSICS LETTERS, 2007, 90 (19)
[5]   Dual-function circular polarization converter for microwave/plasma processing systems [J].
Chang, TH ;
Barnett, LR ;
Chu, KR ;
Tai, F ;
Hsu, CL .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (02) :1530-1534
[6]   Characterization of stationary and nonstationary behavior in gyrotron oscillators [J].
Chang, TH ;
Chen, SH ;
Barnett, LR ;
Chu, KR .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :648021-648024
[7]   Saturated behavior of the gyrotron backward-wave oscillator [J].
Chen, SH ;
Chu, KR ;
Chang, TH .
PHYSICAL REVIEW LETTERS, 2000, 85 (12) :2633-2636
[8]   Linear and time-dependent behavior of the gyrotron backward-wave oscillator [J].
Chen, SH ;
Chang, TH ;
Pao, KF ;
Fan, CT ;
Chu, KR .
PHYSICAL REVIEW LETTERS, 2002, 89 (26)
[9]   Ultrahigh gain gyrotron traveling wave amplifier [J].
Chu, KR ;
Chen, HY ;
Hung, CL ;
Chang, TH ;
Barnett, LR ;
Chen, SH ;
Yang, TT .
PHYSICAL REVIEW LETTERS, 1998, 81 (21) :4760-4763
[10]  
Chu KR, 1999, IEEE T PLASMA SCI, V27, P391, DOI 10.1109/27.772266