Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review

被引:65
作者
Szymiczek, Agata [1 ]
Lone, Amna [1 ]
Akbari, Mohammad R. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Womens Coll, Res Inst, Toronto, ON, Canada
[2] Univ Toronto, Inst Med Sci, Fac Med, Toronto, ON, Canada
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
关键词
breast cancer; gene expression profiling; hormone receptor; intrinsic subtyping; prognosis; response to treatment; GROWTH-FACTOR RECEPTOR; PATHOLOGICAL COMPLETE RESPONSE; IN-SITU HYBRIDIZATION; INTERNATIONAL EXPERT CONSENSUS; ESTROGEN-RECEPTOR; GENE-EXPRESSION; AMERICAN SOCIETY; PROGNOSTIC VALUE; NEOADJUVANT CHEMOTHERAPY; PROGESTERONE-RECEPTOR;
D O I
10.1111/cge.13900
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Breast cancer is a heterogeneous disease manifesting diversity at the molecular, histological and clinical level. The development of breast cancer classification was centered on informing clinical decisions. The current approach to the classification of breast cancer, which categorizes this disease into clinical subtypes based on the detection of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and proliferation marker Ki67, is not ideal. This is manifested as a heterogeneity of therapeutic responses and outcomes within the clinical subtypes. The newer classification model, based on gene expression profiling (intrinsic subtyping) informs about transcriptional responses downstream from IHC single markers, revealing deeper appreciation for the disease heterogeneity and capturing tumor biology in a more comprehensive way than an expression of a single protein or gene alone. While accumulating evidences suggest that intrinsic subtypes provide clinically relevant information beyond clinical surrogates, it is imperative to establish whether the current conventional immunohistochemistry-based clinical subtyping approach could be improved by gene expression profiling and if this approach has a potential to translate into clinical practice.
引用
收藏
页码:613 / 637
页数:25
相关论文
共 180 条
[51]   Deciphering HER2 Breast Cancer Disease: Biological and Clinical Implications [J].
Godoy-Ortiz, Ana ;
Sanchez-Munoz, Alfonso ;
Chica Parrado, Maria Rosario ;
Alvarez, Martina ;
Ribelles, Nuria ;
Rueda Dominguez, Antonio ;
Alba, Emilio .
FRONTIERS IN ONCOLOGY, 2019, 9
[52]   Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 [J].
Goldhirsch, A. ;
Winer, E. P. ;
Coates, A. S. ;
Gelber, R. D. ;
Piccart-Gebhart, M. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2013, 24 (09) :2206-2223
[53]  
Gradishar WJ, 2020, NCCN GUIDELINES VERS
[54]   In Memoriam: Elwood Jensen (1920-2012) [J].
Greene, Geoffrey L. .
ENDOCRINE REVIEWS, 2013, 34 (06) :761-763
[55]   Estrogen receptor variants in ER-positive basal-type breast cancers responding to therapy like ER-negative breast cancers [J].
Groenendijk, Floris H. ;
Treece, Tina ;
Yoder, Erin ;
Baron, Paul ;
Beitsch, Peter ;
Audeh, William ;
Dinjens, Winand N. M. ;
Bernards, Rene ;
Whitworth, Pat .
NPJ BREAST CANCER, 2019, 5 (1)
[56]   Estrogen receptor splice variants as a potential source of false-positive estrogen receptor status in breast cancer diagnostics [J].
Groenendijk, Floris H. ;
Zwart, Wilbert ;
Floore, Arno ;
Akbari, Stephanie ;
Bernards, Rene .
BREAST CANCER RESEARCH AND TREATMENT, 2013, 140 (03) :475-484
[57]   Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement [J].
Guiu, S. ;
Michiels, S. ;
Andre, F. ;
Cortes, J. ;
Denkert, C. ;
Di Leo, A. ;
Hennessy, B. T. ;
Sorlie, T. ;
Sotiriou, C. ;
Turner, N. ;
Van de Vijver, M. ;
Viale, G. ;
Loi, S. ;
Reis-Filho, J. S. .
ANNALS OF ONCOLOGY, 2012, 23 (12) :2997-3006
[58]   Large Scale Comparison of Gene Expression Levels by Microarrays and RNAseq Using TCGA Data [J].
Guo, Yan ;
Sheng, Quanhu ;
Li, Jiang ;
Ye, Fei ;
Samuels, David C. ;
Shyr, Yu .
PLOS ONE, 2013, 8 (08)
[59]   A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? [J].
Haibe-Kains, B. ;
Desmedt, C. ;
Sotiriou, C. ;
Bontempi, G. .
BIOINFORMATICS, 2008, 24 (19) :2200-2208
[60]  
Hammond MEH, 2010, ARCH PATHOL LAB MED, V134, pE48