Painleve analysis and exact solutions of the resonant Davey-Stewartson system

被引:13
作者
Liang, Z. F. [2 ]
Tang, X. Y. [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China
[2] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
[3] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
基金
中国国家自然科学基金;
关键词
Resonant Davey-Stewartson system; Painleve test; Soliton solution; NONLINEAR SCHRODINGER-EQUATION; VARIABLE SEPARATION APPROACH; EXCITATIONS; SOLITONS;
D O I
10.1016/j.physleta.2009.10.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the resonant Davey-Stewartson (RDS) system can pass the Painlev test. By truncating the Laurent series to a constant level term, a dependent variable transformation is naturally derived, which leads to the bilinear forms of the RDS system. From the bilinear equations, through making suitable assumptions, some new soliton solutions are obtained. Some representative profiles of the solitary waves are graphically displayed including the two-line soliton solution, "Y" soliton solution, "V" soliton solution, solitoff, etc. The solutions might be useful to describe the nonlinear phenomena in Madelung fluids, capillarity fluids, and so on. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2003, Optical Solitons
[2]   Propagating wave patterns and "peakons" of the Davey-Stewartson system [J].
Chow, KW ;
Lou, SY .
CHAOS SOLITONS & FRACTALS, 2006, 27 (02) :561-567
[3]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[4]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[5]   Two types of lower-hybrid waves in dusty plasmas and cusp solitons [J].
Ehsan, Z. ;
Tsintsadze, N. L. ;
Murtaza, G. ;
Shah, H. A. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[6]  
Gao Y, 2009, COMMUN THEOR PHYS, V52, P581, DOI 10.1088/0253-6102/52/4/05
[7]   Solitons of the resonant nonlinear schrodinger equation with nontrivial boundary conditions: Hirota bilinear method [J].
Lee, J.-H. ;
Pashaev, O. K. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) :991-1003
[8]   The resonant nonlinear Schrodinger equation in cold plasma physics. Application of Backlund-Darboux transformations and superposition principles [J].
Lee, J.-H. ;
Pashaev, O. K. ;
Rogers, C. ;
Schief, W. K. .
JOURNAL OF PLASMA PHYSICS, 2007, 73 (02) :257-272
[9]   Resonance solitons as black holes in Madelung fluid [J].
Pashaev, OK ;
Lee, JH .
MODERN PHYSICS LETTERS A, 2002, 17 (24) :1601-1619
[10]   Soliton resonances in a generalized nonlinear Schrodinger equation [J].
Pashaev, Oktay K. ;
Lee, Jyh-Hao ;
Rogers, Colin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (45)