MnO-Co composite modified Ni-SDC anode for intermediate temperature solid oxide fuel cells

被引:13
|
作者
Zhao, Jie [1 ]
Xu, Xiaoyong [1 ]
Zhou, Wei [1 ]
Zhu, Zhonghua [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
MnO-Co composite modified Ni-Ce0.8Sm0.2O2 (-) (x) anode; Solid oxide fuel cells; Hydrogen; Methane; METHANE; SOFC; PERFORMANCE; ELECTROLYTE; HYDROGEN; FABRICATION; OXIDATION; CATALYSTS; FILM;
D O I
10.1016/j.fuproc.2016.08.024
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
MnO-Co composite was employed to modify a Ni-Sm0.2Ce0.8O2 (-) (x) anode. The electrochemical performance of the MnO-Co modified anode was evaluated on an anode-supported solid oxide fuel cell in dry hydrogen and dry methane, separately. The modified anode exhibited much higher peak power density in H-2 compared with the original anode at the same condition. For example, the peak power density by the modified anode was 1756 mW cm(-2) at 700 degrees C, compared with 1322 mW cm(-2) by the original anode at the same temperature. The higher peak power density of modified anode was attributed to its much lower polarization resistance and relatively higher porosity. However, it showed a worse stability than the unmodified anode in dry methane at 650 degrees C due to severer carbon deposition. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [1] High-performance Ni-SDC cermet anode for solid oxide fuel cells at medium operating temperature
    Maric, R
    Ohara, S
    Fukui, T
    Inagaki, T
    Fujita, J
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 1998, 1 (05) : 201 - 203
  • [2] Microstructure tailoring of combustion-derived Ni-GDC and Ni-SDC composites as anode materials for intermediate temperature solid oxide fuel cells
    Tina Skalar
    Klementina Zupan
    Marjan Marinšek
    Journal of the Australian Ceramic Society, 2019, 55 : 123 - 133
  • [3] Microstructure tailoring of combustion-derived Ni-GDC and Ni-SDC composites as anode materials for intermediate temperature solid oxide fuel cells
    Skalar, Tina
    Zupan, Klementina
    Marinsek, Marjan
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2019, 55 (01) : 123 - 133
  • [4] Ni-Fe plus SDC composite as anode material for intermediate temperature solid oxide fuel cell
    Lu, X. C.
    Zhu, J. H.
    JOURNAL OF POWER SOURCES, 2007, 165 (02) : 678 - 684
  • [5] Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte
    Zhang, XG
    Ohara, S
    Maric, R
    Mukai, K
    Fukui, T
    Yoshida, H
    Nishimura, M
    Inagaki, T
    Miura, K
    JOURNAL OF POWER SOURCES, 1999, 83 (1-2) : 170 - 177
  • [6] Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC
    Misono, Teruhiko
    Murata, Kenji
    Fukui, Takehisa
    Chaichanawong, Jintawat
    Sato, Kazuyoshi
    Abe, Hiroya
    Naito, Makio
    JOURNAL OF POWER SOURCES, 2006, 157 (02) : 754 - 757
  • [7] Reactive sputtered Ni-SDC cermet alloy anode for low-temperature solid oxide fuel cell
    Kim, Taeyoung
    Kim, Hyong June
    Go, Dohyun
    Shin, Jeong Woo
    Yang, Byung Chan
    Cho, Gu Young
    Gur, Turgut M.
    An, Jihwan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [8] Conversion of methane to syngas in a solid oxide fuel cell with Ni-SDC anode and LSGM electrolyte
    Zhang, X
    Ohara, S
    Chen, H
    Fukui, T
    FUEL, 2002, 81 (08) : 989 - 996
  • [9] Calcium-Modified Ni-SDC Anodes in Solid Oxide Fuel Cells for Direct Dry Reforming of Methane
    Mishina, Tomohiro
    Fujiwara, Naoya
    Tada, Shohei
    Takagaki, Atsushi
    Kikuchi, Ryuji
    Oyama, Shigeo Ted
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [10] Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO
    Ideris, Asmida
    Croiset, Eric
    Pritzker, Mark
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (14) : 9180 - 9187