A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem

被引:22
|
作者
Bi, Chunjia [2 ]
Ginting, Victor [1 ]
机构
[1] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[2] Yantai Univ, Dept Math, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
SUPERCONVERGENCE; APPROXIMATIONS;
D O I
10.1007/s00211-009-0247-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a residual-type a posteriori error estimator of the finite volume element method for a quasi-linear elliptic problem of nonmonotone type and derive computable upper and lower bounds on the error in the H (1)-norm. Numerical experiments are provided to illustrate the performance of the proposed estimator.
引用
收藏
页码:107 / 132
页数:26
相关论文
共 50 条