Action recognition from only somatosensory information using spectral learning in a hidden Markov model

被引:5
作者
Takano, Wataru [1 ]
Obara, Junya [1 ]
Nakamura, Yoshihiko [1 ]
机构
[1] Univ Tokyo, Mechanoinformat, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
Action classification; Somatosensory; HMM; MUSCLE; PRIMITIVES; ALGORITHM; TIME;
D O I
10.1016/j.robot.2016.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human action classification is fundamental technology for robots that have to interpret a human's intended actions and make appropriate responses, as they will have to do if they are to be integrated into our daily lives. Improved measurement of human motion, using an optical motion capture system or a depth sensor, allows robots to recognize human actions from superficial motion data, such as camera images containing human actions or positions of human bodies. But existing technology for motion recognition does not handle the contact force that always exists between the human and the environment that the human is acting upon. More specifically, humans perform feasible actions by controlling not only their posture but also the contact forces. Furthermore these contact forces require appropriate muscle tensions in the full body. These muscle tensions or activities are expected to be useful for robots observing human actions to estimate the human's somatosensory states and consequently understand the intended action. This paper proposes a novel approach to classifying human actions using only the activities of all the muscles in the human body. Continuous spatio-temporal data of the activity of an individual muscle is encoded into a discrete hidden Markov model (HMM), and the set of HMMs for all the muscles forms a classifier for the specific action. Our classifiers were tested on muscle activities estimated from captured human motions, electromyography data, and reaction forces. The results demonstrate their superiority over commonly used HMM-based classifiers. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 21 条
[1]  
[Anonymous], P BRIT MACH VIS C LE
[2]  
[Anonymous], P 13 INT C ART INT S
[3]  
[Anonymous], 1993, PRENTICE HALL SIGNAL
[4]   Discriminative and adaptive imitation in uni-manual and bi-manual tasks [J].
Billard, Aude G. ;
Calinon, Sylvain ;
Guenter, Florent .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2006, 54 (05) :370-384
[5]   Robots that imitate humans [J].
Breazeal, C ;
Scassellati, B .
TRENDS IN COGNITIVE SCIENCES, 2002, 6 (11) :481-487
[6]  
Calinon Sylvain, 2008, SPRINGER HDB ROBOTIC
[7]   MOSAIC model for sensorimotor learning and control [J].
Haruno, M ;
Wolpert, DM ;
Kawato, M .
NEURAL COMPUTATION, 2001, 13 (10) :2201-2220
[8]   A spectral algorithm for learning Hidden Markov Models [J].
Hsu, Daniel ;
Kakade, Sham M. ;
Zhang, Tong .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (05) :1460-1480
[9]  
IJSPEERT AJ, 2003, ADV NEURAL INFORM PR
[10]   Observable operator models for discrete stochastic time series [J].
Jaeger, H .
NEURAL COMPUTATION, 2000, 12 (06) :1371-1398