Post genome-wide gene-environment interaction study: The effect of genetically driven insulin resistance on breast cancer risk using Mendelian randomization

被引:8
|
作者
Jung, Su Yon [1 ]
Mancuso, Nicholas [2 ]
Papp, Jeanette [3 ]
Sobel, Eric [3 ]
Zhang, Zuo-Feng [4 ]
机构
[1] Univ Calif Los Angeles, Sch Nursing, Translat Sci Sect, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA USA
来源
PLOS ONE | 2019年 / 14卷 / 06期
基金
美国国家卫生研究院;
关键词
POLYMORPHISM; ASSOCIATION; GLUCOSE; OBESITY;
D O I
10.1371/journal.pone.0218917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose The role of insulin resistance (IR) in developing postmenopausal breast cancer has not been thoroughly resolved and may be confounded by lifestyle factors such as obesity. We examined whether genetically determined IR is causally associated with breast cancer risk. Methods We conducted Mendelian randomization (MR) analyses using individual-level data from our previous meta-analysis of a genome-wide association study (GWAS) (n = 11,109 non-Hispanic white postmenopausal women). Four single-nucleotide polymorphisms were associated with fasting glucose (FG), 2 with fasting insulin (FI), and 6 with homeostatic model assessment-IR (HOMA-IR) but were not associated with obesity. We used this GWAS to employ hazard ratios (HRs) for breast cancer risk by adjusting for potential confounding factors. Results No direct association was observed between comprising 12 IR genetic instruments and breast cancer risk (HR = 0.93, 95% CI: 0.76-1.14). In phenotype-specific analysis, genetically elevated FG was associated with reduced risk for breast cancer (main contributor of this MR-effect estimate: G6PC2 rs13431652; HR = 0.59, 95% CI: 0.35-0.99). Genetically driven FI and HOMA-IR were not significantly associated. Stratification analyses by body mass index, exercise, and dietary fat intake with combined phenotypes showed that genetically elevated IR was associated with greater breast cancer risk in overall obesity and inactive subgroups (single contributor: MTRR/LOC729506 rs13188458; HR = 2.21, 95% CI: 1.03-4.75). Conclusions We found complex evidence for causal association between IR and risk of breast cancer, which may support the potential value of intervention trials to lower IR and reduce breast cancer risk.
引用
收藏
页数:10
相关论文
共 13 条
  • [1] Breast Cancer Risk and Insulin Resistance: Post Genome-Wide Gene-Environment Interaction Study Using a Random Survival Forest
    Jung, Su Yon
    Papp, Jeanette C.
    Sobel, Eric M.
    Yu, Herbert
    Zhang, Zuo-Feng
    CANCER RESEARCH, 2019, 79 (10) : 2784 - 2794
  • [2] A Genome-Wide Gene-Based Gene-Environment Interaction Study of Breast Cancer in More than 90,000 Women
    Wang, Xiaoliang
    Chen, Hongjie
    Kapoor, Pooja Middha
    Su, Yu-Ru
    Bolla, Manjeet K.
    Dennis, Joe
    Dunning, Alison M.
    Lush, Michael
    Wang, Qin
    Michailidou, Kyriaki
    Pharoah, Paul D. P.
    Hopper, John L.
    Southey, Melissa C.
    Koutros, Stella
    Freeman, Laura E. Beane
    Stone, Jennifer
    Rennert, Gad
    Shibli, Rana
    Murphy, Rachel A.
    Aronson, Kristan
    Guenel, Pascal
    Truong, Therese
    Teras, Lauren R.
    Hodge, James M.
    Canzian, Federico
    Kaaks, Rudolf
    Brenner, Hermann
    Arndt, Volker
    Hoppe, Reiner
    Lo, Wing-Yee
    Behrens, Sabine
    Mannermaa, Arto
    Kosma, Veli-Matti
    Jung, Audrey
    Becher, Heiko
    Glies, Graham G.
    Haiman, Christopher A.
    Maskarinec, Gertraud
    Scott, Christopher
    Winham, Stacey
    Simard, Jacques
    Goldberg, Mark S.
    Zheng, Wei
    Long, Jirong
    Troester, Melissa A.
    Love, Michael I.
    Peng, Cheng
    Tamimi, Rulla
    Eliassen, Heather
    Garcia-Closas, Montserrat
    CANCER RESEARCH COMMUNICATIONS, 2022, 2 (04): : 211 - 219
  • [3] A comprehensive gene-environment interaction analysis in Ovarian Cancer using genome-wide significant common variants
    Kim, Sehee
    Wang, Miao
    Tyrer, Jonathan P.
    Jensen, Allan
    Wiensch, Ashley
    Liu, Gang
    Lee, Alice W.
    Ness, Roberta B.
    Salvatore, Maxwell
    Tworoger, Shelley S.
    Whittemore, Alice S.
    Anton-Culver, Hoda
    Sieh, Weiva
    Olson, Sara H.
    Berchuck, Andrew
    Goode, Ellen L.
    Goodman, Marc T.
    Doherty, Jennifer Anne
    Chenevix-Trench, Georgia
    Rossing, Mary Anne
    Webb, Penelope M.
    Giles, Graham G.
    Terry, Kathryn L.
    Ziogas, Argyrios
    Fortner, Renee T.
    Menon, Usha
    Gayther, Simon A.
    Wu, Anna H.
    Song, Honglin
    Brooks-Wilson, Angela
    Bandera, Elisa, V
    Cook, Linda S.
    Cramer, Daniel W.
    Milne, Roger L.
    Winham, Stacey J.
    Kjaer, Susanne K.
    Modugno, Francesmary
    Thompson, Pamela J.
    Chang-Claude, Jenny
    Harris, Holly R.
    Schildkraut, Joellen M.
    Le, Nhu D.
    Wentzensen, Nico
    Trabert, Britton
    Hogdall, Estrid
    Huntsman, David
    Pike, Malcolm C.
    Pharoah, Paul D. P.
    Pearce, Celeste Leigh
    Mukherjee, Bhramar
    INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (09) : 2192 - 2205
  • [4] Gene polymorphisms related to insulin resistance and gene-environment interaction in colorectal cancer risk
    Hu, Xiaoqin
    Feng, Fei
    Li, Xiaoling
    Yuan, Ping
    Luan, Rongsheng
    Yan, Jin
    Liu, Wenhui
    Yang, Yanfang
    ANNALS OF HUMAN BIOLOGY, 2015, 42 (06) : 560 - 568
  • [5] Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease
    Biernacka, Joanna M.
    Chung, Sun Ju
    Armasu, Sebastian M.
    Anderson, Kari S.
    Lill, Christina M.
    Bertram, Lars
    Ahlskog, J. E.
    Brighina, Laura
    Frigerio, Roberta
    Maraganore, Demetrius M.
    PARKINSONISM & RELATED DISORDERS, 2016, 32 : 25 - 30
  • [6] Genome-Wide Meta-analysis of Gene-Environmental Interaction for Insulin Resistance Phenotypes and Breast Cancer Risk in Postmenopausal Women
    Jung, Su Yon
    Mancuso, Nick
    Yu, Herbert
    Papp, Jeanette
    Sobei, Eric
    Zhang, Zuo-Feng
    CANCER PREVENTION RESEARCH, 2019, 12 (01) : 31 - 41
  • [7] Genome-Wide Gene-Environment Interaction Analyses to Understand the Relationship between Red Meat and Processed Meat Intake and Colorectal Cancer Risk
    Stern, Mariana C.
    Sanchez Mendez, Joel
    Kim, Andre E.
    Obon-Santacana, Mireia
    Moratalla-Navarro, Ferran
    Martin, Vicente
    Moreno, Victor
    Lin, Yi
    Bien, Stephanie A.
    Qu, Conghui
    Su, Yu-Ru
    White, Emily
    Harrison, Tabitha A.
    Huyghe, Jeroen R.
    Tangen, Catherine M.
    Newcomb, Polly A.
    Phipps, Amanda I.
    Thomas, Claire E.
    Kawaguchi, Eric S.
    Lewinger, Juan Pablo
    Morrison, John L.
    Conti, David V.
    Wang, Jun
    Thomas, Duncan C.
    Platz, Elizabeth A.
    Visvanathan, Kala
    Keku, Temitope O.
    Newton, Christina C.
    Um, Caroline Y.
    Kundaje, Anshul
    Shcherbina, Anna
    Murphy, Neil
    Gunter, Marc J.
    Dimou, Niki
    Papadimitriou, Nikos
    Bezieau, Stephane
    van Duijnhoven, Franzel J. B.
    Maennistoe, Satu
    Rennert, Gad
    Wolk, Alicja
    Hoffmeister, Michael
    Brenner, Hermann
    Chang-Claude, Jenny
    Tian, Yu
    Le Marchand, Loic
    Cotterchio, Michelle
    Tsilidis, Konstantinos K.
    Bishop, D. Timothy
    Melaku, Yohannes Adama
    Lynch, Brigid M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2024, 33 (03) : 400 - 410
  • [8] A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population
    Tan, Aihua
    Sun, Jielin
    Xia, Ning
    Qin, Xue
    Hu, Yanling
    Zhang, Shijun
    Tao, Sha
    Gao, Yong
    Yang, Xiaobo
    Zhang, Haiying
    Kim, Seong-Tae
    Peng, Tao
    Lin, Xiaoling
    Li, Li
    Mo, Linjian
    Liang, Zhengjia
    Shi, Deyi
    Huang, Zhang
    Huang, Xianghua
    Liu, Ming
    Ding, Qiang
    Trent, Jeffrey M.
    Zheng, S. Lilly
    Mo, Zengnan
    Xu, Jianfeng
    HUMAN MOLECULAR GENETICS, 2012, 21 (07) : 1658 - 1664
  • [9] Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: a genome-wide interaction study
    Rudolph, Anja
    Hein, Rebecca
    Lindstroem, Sara
    Beckmann, Lars
    Behrens, Sabine
    Liu, Jianjun
    Aschard, Hugues
    Bolla, Manjeet K.
    Wang, Jean
    Truong, Therese
    Cordina-Duverger, Emilie
    Menegaux, Florence
    Bruening, Thomas
    Harth, Volker
    Severi, Gianluca
    Baglietto, Laura
    Southey, Melissa
    Chanock, Stephen J.
    Lissowska, Jolanta
    Figueroa, Jonine D.
    Eriksson, Mikael
    Humpreys, Keith
    Darabi, Hatef
    Olson, Janet E.
    Stevens, Kristen N.
    Vachon, Celine M.
    Knight, Julia A.
    Glendon, Gord
    Mulligan, Anna Marie
    Ashworth, Alan
    Orr, Nicholas
    Schoemaker, Minouk
    Webb, Penny M.
    Guenel, Pascal
    Brauch, Hiltrud
    Giles, Graham
    Garcia-Closas, Montserrat
    Czene, Kamila
    Chenevix-Trench, Georgia
    Couch, Fergus J.
    Andrulis, Irene L.
    Swerdlow, Anthony
    Hunter, David J.
    Flesch-Janys, Dieter
    Easton, Douglas F.
    Hall, Per
    Nevanlinna, Heli
    Kraft, Peter
    Chang-Claude, Jenny
    ENDOCRINE-RELATED CANCER, 2013, 20 (06) : 875 - 887
  • [10] Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee
    Hamza, Taye H.
    Chen, Honglei
    Hill-Burns, Erin M.
    Rhodes, Shannon L.
    Montimurro, Jennifer
    Kay, Denise M.
    Tenesa, Albert
    Kusel, Victoria I.
    Sheehan, Patricia
    Eaaswarkhanth, Muthukrishnan
    Yearout, Dora
    Samii, Ali
    Roberts, John W.
    Agarwal, Pinky
    Bordelon, Yvette
    Park, Yikyung
    Wang, Liyong
    Gao, Jianjun
    Vance, Jeffery M.
    Kendler, Kenneth S.
    Bacanu, Silviu-Alin
    Scott, William K.
    Ritz, Beate
    Nutt, John
    Factor, Stewart A.
    Zabetian, Cyrus P.
    Payami, Haydeh
    PLOS GENETICS, 2011, 7 (08):