Generation of relativistic vortex laser beams by spiral shaped plasma

被引:10
作者
Long, Tianyun [1 ,2 ,3 ,4 ]
Zhou, Cangtao [3 ,4 ]
Ju, Libao [3 ,4 ]
Huang, Taiwu [3 ,4 ]
Yu, Mingyang [3 ,4 ]
Jiang, Ke [3 ,4 ,5 ]
Wu, Chaoneng [3 ,4 ,5 ]
Wu, Sizhong [3 ,4 ]
Zhang, Hua [3 ,4 ]
Qiao, Bin [1 ,2 ,3 ,4 ]
Ruan, Shuangchen [3 ,4 ]
He, Xiantu [1 ,2 ,3 ,4 ,6 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen 518118, Peoples R China
[4] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
[5] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[6] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA CICIFSA, Shanghai 200240, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ORBITAL ANGULAR-MOMENTUM; LIGHT;
D O I
10.1103/PhysRevResearch.2.033145
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three-dimensional particle-in-cell simulations show that relativistic Gaussian laser light can be transformed into relativistic vortex laser light with axial orbital angular momentum (OAM) as it propagates through a homogeneous spiral-profiled low-density plasma slab. In the process, the plane equiphase surfaces of the Gaussian laser undergo azimuthal modulation and become a continuous helical surface. The intensity profile of the laser changes from maximum-on-axis to donut-shaped. Because of the azimuthally varying slab thickness, the laser ponderomotive and the charge-separation forces exert a torque on the plasma when it passes through it, resulting in the creation of oppositely directed OAM in the plasma ions and the laser light, with the electrons remaining nearly OAM free. The proposed scheme can be used to generate both single- and multi-mode relativistic vortex lasers propagating along the direction of the input laser, which is especially convenient for many applications.
引用
收藏
页数:5
相关论文
共 33 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Contemporary particle-in-cell approach to laser-plasma modelling [J].
Arber, T. D. ;
Bennett, K. ;
Brady, C. S. ;
Lawrence-Douglas, A. ;
Ramsay, M. G. ;
Sircombe, N. J. ;
Gillies, P. ;
Evans, R. G. ;
Schmitz, H. ;
Bell, A. R. ;
Ridgers, C. P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (11)
[3]   Optical angular-momentum flux [J].
Barnett, SM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (02) :S7-S16
[4]   RELATIVISTIC PONDEROMOTIVE FORCE, UPHILL ACCELERATION, AND TRANSITION TO CHAOS [J].
BAUER, D ;
MULSER, P ;
STEEB, WH .
PHYSICAL REVIEW LETTERS, 1995, 75 (25) :4622-4625
[5]   ASTIGMATIC LASER MODE CONVERTERS AND TRANSFER OF ORBITAL ANGULAR-MOMENTUM [J].
BEIJERSBERGEN, MW ;
ALLEN, L ;
VANDERVEEN, HELO ;
WOERDMAN, JP .
OPTICS COMMUNICATIONS, 1993, 96 (1-3) :123-132
[6]   HELICAL-WAVE-FRONT LASER-BEAMS PRODUCED WITH A SPIRAL PHASEPLATE [J].
BEIJERSBERGEN, MW ;
COERWINKEL, RPC ;
KRISTENSEN, M ;
WOERDMAN, JP .
OPTICS COMMUNICATIONS, 1994, 112 (5-6) :321-327
[7]   Mechanical detection and measurement of the angular momentum of light [J].
Beth, RA .
PHYSICAL REVIEW, 1936, 50 (02) :115-125
[8]   γ-Ray Beams with Large Orbital Angular Momentum via Nonlinear Compton Scattering with Radiation Reaction [J].
Chen, Yue-Yue ;
Li, Jian-Xing ;
Hatsagortsyan, Karen Z. ;
Keitel, Christoph H. .
PHYSICAL REVIEW LETTERS, 2018, 121 (07)
[9]   Rotational frequency shift of a light beam [J].
Courtial, J ;
Robertson, DA ;
Dholakia, K ;
Allen, L ;
Padgett, MJ .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :4828-4830
[10]   Interaction of Ultraintense Laser Vortices with Plasma Mirrors [J].
Denoeud, A. ;
Chopineau, L. ;
Leblanc, A. ;
Quere, F. .
PHYSICAL REVIEW LETTERS, 2017, 118 (03)