On subspaces of invariant vectors

被引:6
作者
Shulman, Tatiana [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
关键词
uniformly bounded representations; continuous group actions; complemented subspaces; fixed point theorems; SPACES;
D O I
10.4064/sm8378-11-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-pi be the subspace of fixed vectors for a uniformly bounded representation it of a group G on a Banach space X. We study the problem of the existence and uniqueness of a subspace Y that complements X-pi in X. Similar questions for G-invariant complement to X-pi are considered. We prove that every non-amenable discrete group G has a representation with non-complemented X-pi and find some conditions that provide a G-invariant complement. A special attention is given to representations on C(K) that arise from an action of G on a metric compact K.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]   Property (T) and rigidity for actions on Banach spaces [J].
Bader, Uri ;
Furman, Alex ;
Gelander, Tsachik ;
Monod, Nicolas .
ACTA MATHEMATICA, 2007, 198 (01) :57-105
[3]  
Brown N.P., 2008, C*-Algebras and Finite Dimensional Approximations, V88
[4]   ON VON-NEUMANN-ALGEBRAS WHICH ARE COMPLEMENTED SUBSPACES OF B(H) [J].
CHRISTENSEN, E ;
SINCLAIR, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (01) :91-102
[6]   Hilbert C*-modules from group actions: beyond the finite orbits case [J].
Frank, Michael ;
Manuilov, Vladimir ;
Troitsky, Evgenij .
STUDIA MATHEMATICA, 2010, 200 (02) :131-148
[7]  
Haagerup U., 1993, MATH J, V71, P889
[8]   DUALITY IN GENERAL ERGODIC THEORY [J].
HEYNEMAN, RG .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) :1329-&
[9]   AVERAGE ERGODIC SEMIGROUPS OF LINEAR-OPERATORS [J].
NAGEL, RJ .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (04) :75-87
[10]  
Nowak P. W., 2015, HDB GROUP ACTIONS, VII, P121