Controlled Synthesis of Semiconducting Metal Sulfide Nanowires

被引:138
|
作者
Zhang, Fen [1 ]
Wong, Stanislaus S. [1 ,2 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
PHOTOCATALYTIC HYDROGEN-PRODUCTION; ONE-DIMENSIONAL NANOSTRUCTURES; DC ELECTROCHEMICAL DEPOSITION; ROOM-TEMPERATURE SYNTHESIS; SINGLE-SOURCE PRECURSORS; CDS NANOCRYSTALS; CADMIUM-SULFIDE; OPTICAL-PROPERTIES; RAMAN-SCATTERING; CUS NANORODS;
D O I
10.1021/cm901492f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the preparation and characterization of (a) discrete, individual motifs and (b) arrays of crystalline and pure semiconducting transition metal sulfide (CuS, PbS, and CdS) nanowires, synthesized via an inexpensive, generalizable, simplistic, and ambient modified template-directed technique. We have demonstrated control over the diameters and lengths of our one-dimensional (1-D) nanostructures through corresponding variations in the template membrane's pore size and thickness. We have not only successfully generated cubic-phase 1-D CdS nanowires but also produced, at slightly elevated temperatures, unusual CdS cactus-like, hierarchical nanostructures, consisting of tiny nanoneedles projecting out from the outer surfaces of parent CdS nanotube motifs. Opto-vibrational properties of all of these metal sulfide nanomaterials have been extensively studied. In addition, our results indicate that our as-prepared hexagonal-phase CdS cactus-like nanotubes evinced a higher photocatalytic degradation activity than that of both cubic CdS nanowires and their commercial bulk counterparts.
引用
收藏
页码:4541 / 4554
页数:14
相关论文
共 50 条
  • [1] Synthesis and optical spectroscopic studies of semiconducting cadmium sulfide nanowires
    Kuthirummal, Narayanan
    Reppert, Jason
    Dihel, Brian
    Rao, Apparao M.
    APPLIED OPTICS, 2009, 48 (15) : 2842 - 2846
  • [2] Generalized and facile synthesis of semiconducting metal sulfide nanocrystals
    Hyeon, T. (thyeon@plaza.snu.ac.kr), 1600, American Chemical Society (125):
  • [3] Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals
    Choi, Sang-Hyun
    An, Kwangjin
    Kim, Eung-Gyu
    Yu, Jung Ho
    Kim, Jeong Hyun
    Hyeon, Taeghwan
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) : 1645 - 1649
  • [4] Generalized and facile synthesis of semiconducting metal sulfide nanocrystals
    Joo, J
    Na, HB
    Yu, T
    Yu, JH
    Kim, YW
    Wu, FX
    Zhang, JZ
    Hyeon, T
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (36) : 11100 - 11105
  • [5] In-Situ synthesis of semiconducting metal sulfide nanoparticles in a polysaccharide matrix
    Reishofer, David
    Ehmann, Heike
    Dunst, Sebastian
    Trimmel, Gregor
    Spirk, Stefan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Synthesis of metal sulfide materials with controlled architecture
    Scott, RWJ
    MacLachlan, MJ
    Ozin, GA
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1999, 4 (02): : 113 - 121
  • [7] The synthesis of matrices of embedded semiconducting nanowires
    Ziegler, K
    Ryan, KM
    Rice, R
    Crowley, T
    Erts, D
    Olin, H
    Patterson, J
    Spalding, TR
    Holmes, JD
    Morris, MA
    FARADAY DISCUSSIONS, 2004, 125 : 311 - 326
  • [8] Solvent-Less Solid State Synthesis of Dispersible Metal and Semiconducting Metal Sulfide Nanocrystals
    Bera, Abhijit
    Busupalli, Balanagulu
    Prasad, Bhagavatula L. V.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 12006 - 12016
  • [9] Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts
    Rao, R
    Chandrasekaran, H
    Gubbala, S
    Sunkara, MK
    Daraio, C
    Jin, S
    Rao, AM
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (05) : 941 - 946
  • [10] Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts
    R. Rao
    H. Chandrasekaran
    S. Gubbala
    M. K. Sunkara
    C. Daraio
    S. Jin
    A. M. Rao
    Journal of Electronic Materials, 2006, 35 : 941 - 946