Nonresonance problem for higher-order systems

被引:0
|
作者
Yang, XJ [1 ]
机构
[1] Tsing Hua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
two-point problem; nonresonance; higher-order systems;
D O I
10.1016/S0096-3003(02)00064-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of solutions for the two-point boundary value problem. [GRAPHICS] u((k)) (0) = u((k)) (T) = 0, k = 0, 1,..., m-1,. where f is an element of C([0, T] x R-nm, R-n) and lambda(0),..., lambda(m-1) are some constant vectors in R-n, T > 0, n, m is an element of N. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:505 / 515
页数:11
相关论文
共 50 条
  • [1] Lasota–Opial type conditions for periodic problem for systems of higher-order functional differential equations
    Sulkhan Mukhigulashvili
    Bedřich Půža
    Journal of Inequalities and Applications, 2020
  • [2] Lasota-Opial type conditions for periodic problem for systems of higher-order functional differential equations
    Mukhigulashvili, Sulkhan
    Puza, Bedrich
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] ON HIGHER-ORDER ANISOTROPIC PERTURBED CAGINALP PHASE FIELD SYSTEMS
    Ekohela, Clesh Deseskel Elion
    Moukoko, Daniel
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2019, 26 : 36 - 53
  • [4] Higher-Order Anisotropic Caginalp Phase-Field Systems
    Alain Miranville
    Mediterranean Journal of Mathematics, 2016, 13 : 4519 - 4535
  • [5] Higher-Order Anisotropic Caginalp Phase-Field Systems
    Miranville, Alain
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4519 - 4535
  • [6] Higher-order contact mechanics
    de Leon, Manuel
    Gaset, Jordi
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    ANNALS OF PHYSICS, 2021, 425
  • [7] On simultaneous row and column reduction of higher-order linear differential systems
    Barkatou, Moulay A.
    El Bacha, Carole
    Labahn, George
    Pfluegel, Eckhard
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 : 45 - 64
  • [8] Approximate output feedback optimal control of higher-order dynamical systems
    Goh, CJ
    Edwards, NJ
    OPTIMAL CONTROL APPLICATIONS & METHODS, 1997, 18 (02) : 123 - 137
  • [9] On Higher-Order Anisotropic Conservative Caginalp Phase-Field Systems
    Alain Miranville
    Applied Mathematics & Optimization, 2018, 77 : 297 - 314
  • [10] On Higher-Order Anisotropic Conservative Caginalp Phase-Field Systems
    Miranville, Alain
    APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 77 (02) : 297 - 314