Fault Isolation Based on k-Nearest Neighbor Rule for Industrial Processes

被引:116
作者
Zhou, Zhe [1 ]
Wen, Chenglin [2 ]
Yang, Chunjie [1 ]
机构
[1] Zhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Syst Sci & Control Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault isolation; fault smearing; industrial alarm systems; k-nearest neighbor (kNN) rule; multiple sensor faults; RECONSTRUCTION-BASED CONTRIBUTION;
D O I
10.1109/TIE.2016.2520898
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the well-known k-nearest neighbor (kNN) rule has been successfully applied to the fault detection of industrial processes with nonlinear, multimode, and non-Gaussian distributed data. Once a fault is detected, how to investigate the root causes of the fault by isolating the true faulty variables without any historical fault information is a challenging problem. Inspired by the idea of the contribution analysis (CA) methods developed in the frame of the principal component analysis (PCA), in this paper, a novel isolation index will be provided by decomposing the kNN distance used as the detection index in kNN-based fault detection method. The commonly used CA-based isolation methods suffer from smearing effect due to the correlation among the defined isolation indices, thus prone to misdiagnosis. The proposed isolation index is defined in the original measurement space without correlation. Moreover, theoretical analysis of the isolability for the proposed fault isolation method shows that it can isolate multiple sensor faults under a less strict condition than that used in the analysis of those CA-based fault isolation methods. The numerical examples and Tennessee Eastman (TE) benchmark process are used to illustrate the effectiveness of the proposed method.
引用
收藏
页码:2578 / 2586
页数:9
相关论文
共 34 条
[1]   Analysis and generalization of fault diagnosis methods for process monitoring [J].
Alcala, Carlos F. ;
Qin, S. Joe .
JOURNAL OF PROCESS CONTROL, 2011, 21 (03) :322-330
[2]   Reconstruction-based contribution for process monitoring [J].
Alcala, Carlos F. ;
Qin, S. Joe .
AUTOMATICA, 2009, 45 (07) :1593-1600
[3]   Application of principal component analysis for monitoring and disturbance detection of a hydrotreating process [J].
Bezergianni, Stella ;
Kalogianni, Aggeliki .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (18) :6972-6982
[4]   SOME THEOREMS ON QUADRATIC FORMS APPLIED IN THE STUDY OF ANALYSIS OF VARIANCE PROBLEMS .1. EFFECT OF INEQUALITY OF VARIANCE IN THE ONE-WAY CLASSIFICATION [J].
BOX, GEP .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02) :290-302
[5]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[6]   Quality-Related Fault Detection in Industrial Multimode Dynamic Processes [J].
Haghani, Adel ;
Jeinsch, Torsten ;
Ding, Steven X. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (11) :6446-6453
[7]   Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes [J].
He, Q. Peter ;
Wang, Jin .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2007, 20 (04) :345-354
[8]   Large-Scale Semiconductor Process Fault Detection Using a Fast Pattern Recognition-Based Method [J].
He, Qinghua Peter ;
Wang, Jin .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2010, 23 (02) :194-200
[9]   Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference [J].
Jiang, Qingchao ;
Yan, Xuefeng ;
Huang, Biao .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (01) :377-386
[10]   Fault isolation using modified contribution plots [J].
Liu, Jialin ;
Chen, Ding-Sou .
COMPUTERS & CHEMICAL ENGINEERING, 2014, 61 :9-19