U am stability for nonlinear implicit differential equations with Hilfer-Katugampola fractional derivative and impulses

被引:5
作者
Bouriah, Soufyane [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
Zhou, Yong [4 ,5 ]
机构
[1] Hassiba Benbouali Univ, Fac Exact Sci & Informat, Dept Math, POB 151, Chlef 02000, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago De Compostela, Inst Matemat, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela, Spain
[4] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[5] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
基金
中国国家自然科学基金;
关键词
Hilfer-Katugampola fractional derivative; initial value problem; existence; uniqueness; stability; fixed point; impulses; EXISTENCE;
D O I
10.3934/math.2022712
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence, uniqueness and stability results for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii's fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results.
引用
收藏
页码:12859 / 12884
页数:26
相关论文
共 35 条
  • [1] Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P1, DOI 10.1515/9783110553819
  • [2] Abbas S., 2012, TOPICS FRACTIONAL DI, DOI [DOI 10.1007/978-1-4614-4036-9, 10.1007/978-1-4614-4036-9]
  • [3] Abbas S., 2014, ADV FRACTIONAL DIFFE
  • [4] On Generalized Fractional Operators and a Gronwall Type Inequality with Applications
    Adjabi, Yassine
    Jarad, Fahd
    Abdeljawad, Thabet
    [J]. FILOMAT, 2017, 31 (17) : 5457 - 5473
  • [5] A survey on fuzzy fractional differential and optimal control nonlocal evolution equations
    Agarwal, Ravi P.
    Baleanu, Dumitru
    Nieto, Juan J.
    Torres, Delfim F. M.
    Zhou, Yong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 3 - 29
  • [6] Existence of solutions for impulsive integral boundary value problems of fractional order
    Ahmad, Bashir
    Sivasundaram, S.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (01) : 134 - 141
  • [7] Almeida R, 2018, STAT OPTIM INF COMPU, V6, P4
  • [8] Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):
  • [9] Benchohra M., 2006, CONT MATH ITS APPL, V2
  • [10] Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (04): : 447 - 464