Machine Learning the Warm Rain Process

被引:63
作者
Gettelman, A. [1 ,2 ]
Gagne, D. J. [1 ]
Chen, C. -C. [1 ]
Christensen, M. W. [2 ,3 ]
Lebo, Z. J. [4 ]
Morrison, H. [1 ]
Gantos, G. [1 ]
机构
[1] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[2] Univ Oxford, Dept Phys, Oxford, England
[3] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA
[4] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
clouds; machine learning; microphysics; CLOUD MICROPHYSICS; PART II; CLIMATE SIMULATIONS; COLLECTION BREAKUP; CONVECTIVE CLOUDS; MODEL; PARAMETERIZATION; FEEDBACKS; PRECIPITATION; EVOLUTION;
D O I
10.1029/2020MS002268
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Clouds are critical for weather and climate prediction. The multiple scales of cloud processes make simulation difficult. Often models and measurements are used to develop empirical relationships for large-scale models to be computationally efficient. Machine learning provides another potential tool to improve our empirical parameterizations of clouds. To explore these opportunities, we replace the warm rain formation process in a General Circulation Model (GCM) with a detailed treatment from a bin microphysical model that causes a 400% slowdown in the GCM. We analyze the changes in climate that result from the use of the bin microphysical calculation and find improvements in the rain onset and frequency of light rain compared to high resolution process models and observations. We also find a resulting change in the cloud feedback response of the model to warming, which will significantly impact the climate sensitivity. We then replace the bin microphysical model with several neural networks designed to emulate the autoconversion and accretion rates produced by the bin microphysical model. The neural networks are organized into two stages: the first stage identifies where tendencies will be nonzero (and the sign of the tendency), and the second stage predicts the magnitude of the autoconversion and accretion rates. We describe the risks of overfitting, extrapolation, and linearization by using perfect model experiments with and without the emulator. We can recover the solutions with the emulators in almost all respects, and get simulations that perform as the detailed model, but with the computational cost of the control simulation.
引用
收藏
页数:23
相关论文
共 78 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[3]  
[Anonymous], 2016, DEEP LEARNING
[4]   Bounding Global Aerosol Radiative Forcing of Climate Change [J].
Bellouin, N. ;
Quaas, J. ;
Gryspeerdt, E. ;
Kinne, S. ;
Stier, P. ;
Watson-Parris, D. ;
Boucher, O. ;
Carslaw, K. S. ;
Christensen, M. ;
Daniau, A. -L. ;
Dufresne, J. -L. ;
Feingold, G. ;
Fiedler, S. ;
Forster, P. ;
Gettelman, A. ;
Haywood, J. M. ;
Lohmann, U. ;
Malavelle, F. ;
Mauritsen, T. ;
McCoy, D. T. ;
Myhre, G. ;
Muelmenstaedt, J. ;
Neubauer, D. ;
Possner, A. ;
Rugenstein, M. ;
Sato, Y. ;
Schulz, M. ;
Schwartz, S. E. ;
Sourdeval, O. ;
Storelvmo, T. ;
Toll, V. ;
Winker, D. ;
Stevens, B. .
REVIEWS OF GEOPHYSICS, 2020, 58 (01)
[5]   Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3 [J].
Bodas-Salcedo, A. ;
Mulcahy, J. P. ;
Andrews, T. ;
Williams, K. D. ;
Ringer, M. A. ;
Field, P. R. ;
Elsaesser, G. S. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) :1735-1758
[6]   Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model [J].
Bogenschutz, Peter A. ;
Gettelman, Andrew ;
Morrison, Hugh ;
Larson, Vincent E. ;
Craig, Cheryl ;
Schanen, David P. .
JOURNAL OF CLIMATE, 2013, 26 (23) :9655-9676
[7]  
Boucher O, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P571, DOI 10.1017/cbo9781107415324.016
[8]   Prognostic Validation of a Neural Network Unified Physics Parameterization [J].
Brenowitz, N. D. ;
Bretherton, C. S. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (12) :6289-6298
[9]   Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining [J].
Brenowitz, Noah D. ;
Bretherton, Christopher S. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (08) :2728-2744
[10]  
Cess R. D., 1987, Tellus, Series A (Dynamic Meteorology and Oceanography), V39A, P460, DOI 10.1111/j.1600-0870.1987.tb00321.x