Thermal droplet microfluidics: From biology to cooling technology

被引:36
作者
Khater, Asmaa [1 ,2 ,3 ]
Abdelrehim, Osama [1 ]
Mohammadi, Mehdi [3 ,4 ,5 ]
Mohamad, Abdulmajeed [6 ]
Sanati-Nezhad, Amir [3 ,5 ,6 ]
机构
[1] Mansoura Univ, Mech Power Engn Dept, Fac Engn, Mansoura 35516, Egypt
[2] Mansoura Univ, Nanotechnol Ctr, Mansoura 35516, Egypt
[3] Univ Calgary, Dept Mech & Mfg Engn, BioMEMS & Bioinspired Microfluid Lab, Calgary, AB T2N 1N4, Canada
[4] Univ Calgary, Biol Sci Dept, Calgary, AB T2N 1N4, Canada
[5] Univ Calgary, Ctr Bioengn Res & Educ, Calgary, AB T2N 1N4, Canada
[6] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Droplet microfluidics; Lab-on-chip; Droplets; Heaters; Thermal management; Microgels; Emulsions; POLYMERASE-CHAIN-REACTION; MEDIATED ISOTHERMAL AMPLIFICATION; CONTINUOUS-FLOW PCR; HEAT-TRANSFER; REAL-TIME; ON-CHIP; DIGITAL MICROFLUIDICS; TEMPERATURE-CONTROL; EMULSION DROPLETS; LIQUID-LIQUID;
D O I
10.1016/j.trac.2021.116234
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Droplet microfluidic platforms have been developed to produce mono-dispersed microdroplets and provided substanial progress in many chemical, biological, and biomedical applications. Droplets generated in microfluidics can perform multiple functions by either changing the reaction conditions within each droplet or doing the same reactions in parallel, series, or combinations. These reactions mostly require precise control of droplet temperature using contact or non-contact heating sources, including optical-, electrical-, mechanical-and acoustic-based heating techniques. This work exclusively presents thermal energy sources in microfluidics and provides insights into the physical interpretation of thermal actuation of microdroplets. It then highlights advances in thermal droplet microfluidics for biomedical, chemical and engineering applications. The biomedical applications include biosensing, drug discovery, drug testing, and antibiotic susceptibility testing. The chemical applications include synthesis of microgel droplets and Janus particles. The engineering applications include an overview of thermal manipulation of the generated droplets and employing emulsified droplets in thermal management and cooling applications. This review supports the development of new methods to meet different demands arising from these applications. Finally, the challenges involved in the widespread use of thermal microdevices are discussed and further considerations for prospective research in this area are highlighted. ? 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 156 条
[11]   On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets [J].
Beer, N. Reginald ;
Wheeler, Elizabeth K. ;
Lee-Houghton, Lorenna ;
Watkins, Nicholas ;
Nasarabadi, Shanavaz ;
Hebert, Nicole ;
Leung, Patrick ;
Arnold, Don W. ;
Bailey, Christopher G. ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2008, 80 (06) :1854-1858
[12]   On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets [J].
Beer, N. Reginald ;
Hindson, Benjamin J. ;
Wheeler, Elizabeth K. ;
Hall, Sara B. ;
Rose, Klint A. ;
Kennedy, Ian M. ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2007, 79 (22) :8471-8475
[13]  
Bertrand S., 2009, J MICROMECH MICROENG, V19
[14]   Can segmented flow enhance heat transfer in microchannel heat sinks? [J].
Betz, Amy Rachel ;
Attinger, Daniel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (19-20) :3683-3691
[15]   A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes [J].
Bian, Xiaojun ;
Jing, Fengxiang ;
Li, Gang ;
Fan, Xiaoyun ;
Jia, Chunping ;
Zhou, Hongbo ;
Jin, Qinghui ;
Zhao, Jianlong .
BIOSENSORS & BIOELECTRONICS, 2015, 74 :770-777
[16]   Microwave sensing and heating of individual droplets in microfluidic devices [J].
Boybay, Muhammed S. ;
Jiao, Austin ;
Glawdel, Tomasz ;
Ren, Carolyn L. .
LAB ON A CHIP, 2013, 13 (19) :3840-3846
[17]   Droplet microfluidic technology for single-cell high-throughput screening [J].
Brouzes, Eric ;
Medkova, Martina ;
Savenelli, Neal ;
Marran, Dave ;
Twardowski, Mariusz ;
Hutchison, J. Brian ;
Rothberg, Jonathan M. ;
Link, Darren R. ;
Perrimon, Norbert ;
Samuels, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14195-14200
[18]   MOTIONS OF DROPLETS ON HYDROPHOBIC MODEL SURFACES INDUCED BY THERMAL-GRADIENTS [J].
BRZOSKA, JB ;
BROCHARDWYART, F ;
RONDELEZ, F .
LANGMUIR, 1993, 9 (08) :2220-2224
[19]   Droplet microfluidics: recent developments and future applications [J].
Casadevall i Solvas, Xavier ;
deMello, Andrew .
CHEMICAL COMMUNICATIONS, 2011, 47 (07) :1936-1942
[20]   Effect of Joule heating on electrokinetic transport [J].
Cetin, Barbaros ;
Li, Dongqing .
ELECTROPHORESIS, 2008, 29 (05) :994-1005