Performance enhancement of adsorption beds with silica-gel particles packed in aluminum foams

被引:35
作者
Mohammed, Ramy H. [1 ,2 ]
Mesalhy, Osama [1 ,2 ]
Elsayed, Mohamed L. [1 ,2 ]
Chow, Louis C. [1 ]
机构
[1] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
[2] Zagazig Univ, Dept Mech Power Engn, Zagazig 44159, Egypt
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2019年 / 104卷
基金
美国国家科学基金会;
关键词
Open-cell aluminum foam; Adsorption packed bed; Silica gel/water; Bed thermal conductivity; Cooling capacity; METAL-ORGANIC FRAMEWORKS; HEAT-PUMP APPLICATIONS; WATER-ADSORPTION; COOLING SYSTEM; MASS-TRANSFER; ADSORBENT; DRIVEN; GEL/WATER; CHILLER; COATINGS;
D O I
10.1016/j.ijrefrig.2019.03.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
Effective thermal conductivity of a silica-gel/water adsorption packed bed is significantly enhanced by placing silica-gel particles in a high-porosity aluminum foam. The enhancement leads to several folds increase in the specific cooling power (SCP), cooling capacity per unit volume (CPv) and coefficient of performance (COP) of an adsorption cooling (AD) chiller. The thermal response and adsorption kinetics of various silica-gel/aluminum foam beds under typical operating conditions are investigated experimentally and numerically. Effect of pores per inch (PPI) of the foam, silica-gel particle size, bed height and adsorption isotherm of different types of silica-gel on the bed performance are investigated. Based on the results, aluminum foam with 20 PPI is recommended for adsorption cooling applications due to its high surface area and small cell size. 20 PPI aluminum foam can deliver a SCP of 827 W/kg, a CPv of 517 W/m(3) and a COP of 0.75. (C) 2019 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 47 条
[1]   Different bed configurations and time ratios: Performance analysis of low-grade heat driven adsorption system for cooling and electricity [J].
Al-Mousawi, Fadhel Noraldeen ;
Al-Dadah, Raya ;
Mahmoud, Saad .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :1028-1040
[2]   Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system [J].
Askalany, Ahmed A. ;
Henninger, Stefan K. ;
Ghazy, Mohamed ;
Saha, Bidyut B. .
APPLIED THERMAL ENGINEERING, 2017, 110 :695-702
[3]   Experimental and numerical study of influence of air ceiling diffusers on room air flow characteristics [J].
Aziz, Mohammed A. ;
Gad, Ibrahim A. M. ;
Mohammed, El Shahat F. A. ;
Mohammed, Ramy H. .
ENERGY AND BUILDINGS, 2012, 55 :738-746
[4]   Zeolite coated copper foams for heat pumping applications [J].
Bonaccorsi, L ;
Freni, A ;
Proverbio, E ;
Restuccia, G ;
Russo, F .
MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 91 (1-3) :7-14
[5]   Synthesis of thick zeolite 4A coatings on stainless steel [J].
Bonaccorsi, L ;
Proverbio, E .
MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 74 (1-3) :221-229
[6]   Synthesis of SAPO-34 on graphite foams for adsorber heat exchangers [J].
Bonaccorsi, Lucio ;
Bruzzaniti, Paolo ;
Calabrese, Luigi ;
Freni, Angelo ;
Proverbio, Edoardo ;
Restuccia, Giovanni .
APPLIED THERMAL ENGINEERING, 2013, 61 (02) :848-852
[7]   Hydrothermal and microwave synthesis of SAPO (CHA) zeolites on aluminium foams for heat pumping applications [J].
Bonaccorsi, Lucio ;
Calabrese, Luigi ;
Freni, Angelo ;
Proverbio, Edoardo .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 167 :30-37
[8]   Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications [J].
Calabrese L. ;
Bonaccorsi L. ;
Bruzzaniti P. ;
Frazzica A. ;
Freni A. ;
Proverbio E. .
Materials for Renewable and Sustainable Energy, 2018, 7 (04)
[9]   Morphological and functional aspects of zeolite filled siloxane composite foams [J].
Calabrese, L. ;
Bonaccorsi, L. ;
Bruzzaniti, P. ;
Freni, A. ;
Proverbio, E. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (02)
[10]   Synthesis of SAPO-34 zeolite filled macrocellular foams for adsorption heat pump applications: A preliminary study [J].
Calabrese, L. ;
Bonaccorsi, L. ;
Freni, A. ;
Proverbio, E. .
APPLIED THERMAL ENGINEERING, 2017, 124 :1312-1318