Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems

被引:19
作者
Chaudhary, Naveed Ishtiaq [1 ]
Khan, Zeshan Aslam [2 ]
Kiani, Adiqa Kausar [1 ]
Raja, Muhammad Asif Zahoor [1 ]
Chaudhary, Iqra Ishtiaq [3 ]
Pinto, Carla M. A. [4 ,5 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
[2] Int Islamic Univ, Dept Elect Engn, Islamabad, Pakistan
[3] Technol Univ Dublin, FOCAS Res Inst, Dublin, Ireland
[4] Univ Porto, Polytech Porto, Porto, Portugal
[5] Univ Porto, Ctr Math, Porto, Portugal
关键词
Nonlinear systems; Auxiliary model; Fractional Calculus; Adaptive algorithms; LEAST-SQUARES IDENTIFICATION; PARAMETER-ESTIMATION ALGORITHM; LMS ALGORITHM; HIERARCHICAL GRADIENT; ORDER LMS; DESCENT; CALCULUS; MOMENTUM; SWARM;
D O I
10.1016/j.chaos.2022.112611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new avenue of fractional calculus applications has emerged that investigates the design of fractional gradient based novel iterative methods for analyzing fractals and nonlinear dynamics in solving engineering and applied sciences problems. The most discussed algorithm in this regard is fractional least mean square (FLMS) algorithm. This study presents an auxiliary model based normalized variable initial value FLMS (AM-NVIV-FLMS) algorithm for input nonlinear output error (INOE) system identification. First, NVIV-FLMS is presented to automatically tune the learning rate parameter of VIV-FLMS and then the AM-NVIV-FLMS is introduced by incorporating the auxiliary model idea that replaces the unknown values of the information vector with the output of auxiliary model. The proposed AM-NVIV-FLMS scheme is accurate, convergent, robust and reliable for INOE system identification. Simulation results validate the significance and efficacy of the proposed scheme.
引用
收藏
页数:9
相关论文
共 77 条
[1]   A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems [J].
Aslam, Muhammad Saeed ;
Chaudhary, Naveed Ishtiaq ;
Raja, Muhammad Asif Zahoor .
NONLINEAR DYNAMICS, 2017, 87 (01) :519-533
[4]  
Atangana A, 2015, FRACTIONAL DYNAMICS, P174
[5]   Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems [J].
Chaudhary, Naveed Ishtiaq ;
Raja, Muhammad Asif Zahoor ;
Khan, Zeshan Aslam ;
Mehmood, Ammara ;
Shah, Syed Muslim .
CHAOS SOLITONS & FRACTALS, 2022, 157
[6]   Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle [J].
Chaudhary, Naveed Ishtiaq ;
Raja, Muhammad Asif Zahoor ;
Khan, Zeshan Aslam ;
Cheema, Khalid Mehmood ;
Milyani, Ahmad H. .
MATHEMATICS, 2021, 9 (24)
[7]   Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems [J].
Chaudhary, Naveed Ishtiaq ;
Raja, Muhammad Asif Zahoor ;
He, Yigang ;
Khan, Zeshan Aslam ;
Machado, J. A. Tenreiro .
APPLIED MATHEMATICAL MODELLING, 2021, 93 :412-425
[8]   An innovative fractional order LMS algorithm for power signal parameter estimation [J].
Chaudhary, Naveed Ishtiaq ;
Latif, Rizwan ;
Raja, Muhammad Asif Zahoor ;
Tenreiro Machado, J. A. .
APPLIED MATHEMATICAL MODELLING, 2020, 83 :703-718
[9]   Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems [J].
Chaudhary, Naveed Ishtiaq ;
Aslam, Muhammad Saeed ;
Baleanu, Dumitru ;
Raja, Muhammad Asif Zahoor .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) :8381-8399
[10]   Normalized fractional adaptive methods for nonlinear control autoregressive systems [J].
Chaudhary, Naveed Ishtiaq ;
Khan, Zeshan Aslam ;
Zubair, Syed ;
Raja, Muhammad Asif Zahoor ;
Dedovic, Nebojsa .
APPLIED MATHEMATICAL MODELLING, 2019, 66 :457-471