Limit cycles of a perturbed cubic polynomial differential center

被引:47
作者
Buica, Adriana
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
关键词
D O I
10.1016/j.chaos.2005.11.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the limit cycles of the system x = -y(x + a) (y + b) + epsilon P(x, y) y = x(x + a) (y + b) + epsilon Q(x, y) for epsilon sufficiently small, where a, b is an element of R \ {0}, and P, Q are polynomials of degree n. We obtain that 3[(n - 1)/2] + 4 if a not equal b and, respectively, 2[(n - 1)/2] + 2 if a = b, up to first order in epsilon, are upper bounds for the number of the limit cycles that bifurcate from the period annulus of the cubic center given by epsilon = 0. Moreover, there are systems with at least 3[(n - 1)/2] + 2 limit cycles if a not equal b and, respectively, 2[(n - 1)/2] + 1 if a = b. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1059 / 1069
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1991, COMPLEX ANAL INVITAT
[2]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[3]  
Chow SN., 1994, Normal forms and Bifurcation of planar vector fields, DOI 10.1017/CBO9780511665639
[4]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[5]   Chebyshev property of complete elliptic integrals and its application to Abelian integrals [J].
Gasull, A ;
Li, WG ;
Llibre, J ;
Zhang, ZF .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 202 (02) :341-361
[6]   On the nonexistence, existence and uniqueness of limit cycles [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEARITY, 1996, 9 (02) :501-516
[7]  
GINE J, 2005, LIMIT CYCLES CUBIC P
[8]  
HAMBURG P, 1982, ANAL MATEMATICA FUN
[9]   Averaging analysis of a perturbated quadratic center [J].
Llibre, J ;
del Río, JSP ;
Rodríguez, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :45-51
[10]   On the nonoscillation of elliptic integrals [J].
Petrov, GS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1997, 31 (04) :262-265