Additive-free hot-pressed silicon carbide ceramics-A material with exceptional mechanical properties

被引:50
作者
Sajgalik, P. [1 ]
Sedlacek, J. [1 ]
Lences, Z. [1 ]
Dusza, J. [2 ]
Lin, H. -T. [3 ,4 ]
机构
[1] Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, SK-84536 Bratislava, Slovakia
[2] Slovak Acad Sci, Inst Mat Res, Watsonova 45, SK-04353 Kosice, Slovakia
[3] Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Guangdong Univ Technol, Guangzhou, Guangdong, Peoples R China
关键词
Silicon carbide; Hot pressing; Microstructure; Mechanical properties; Creep resistance; HIGH-TEMPERATURE CREEP; FRACTURE-TOUGHNESS; INDENTATION FRACTURE; SIC CERAMICS; MICROSTRUCTURE; STRENGTH; KINETICS; BORON; AIN; ALN;
D O I
10.1016/j.jeurceramsoc.2015.12.013
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 degrees C, a temperature of at least 150-200 degrees C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughness of 29.0 GPa and 5.25 MPam(1/2), respectively. Moreover, the creep rate of 3.8 x 10(-9) s(-1) at 1450 degrees C and the load of 100 MPa is comparable to the commercial alpha-SiC solid state sintered at 2150 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1333 / 1341
页数:9
相关论文
共 40 条
[1]   Surface oxide debonding in field assisted powder sintering [J].
Anderson, KR ;
Groza, JR ;
Fendorf, M ;
Echer, CJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 270 (02) :278-282
[2]   Nano- versus macro-hardness of liquid phase sintered SiC [J].
Balog, M ;
Sajgalík, P ;
Hnatko, M ;
Lencés, Z ;
Monteverde, E ;
Keckés, J ;
Huang, JL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (04) :529-534
[3]  
Balog M, 2003, CERAM TRANS, V142, P191
[4]   Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC [J].
Biswas, K ;
Rixecker, G ;
Aldinger, F .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 374 (1-2) :56-63
[5]  
Bundschuh K, 2001, MATER CORROS, V52, P204, DOI 10.1002/1521-4176(200103)52:3<204::AID-MACO204>3.0.CO
[6]  
2-J
[7]   In situ toughened silicon carbide with Al-B-C additions [J].
Cao, JJ ;
MoberlyChan, WJ ;
DeJonghe, LC ;
Gilbert, CJ ;
Ritchie, RO .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (02) :461-469
[8]   KINETICS AND MECHANISMS OF HIGH-TEMPERATURE CREEP IN SILICON-CARBIDE .1. REACTION-BONDED [J].
CARTER, CH ;
DAVIS, RF ;
BENTLEY, J .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1984, 67 (06) :409-417
[9]   KINETICS AND MECHANISMS OF HIGH-TEMPERATURE CREEP IN SILICON-CARBIDE .2. CHEMICALLY VAPOR-DEPOSITED [J].
CARTER, CH ;
DAVIS, RF ;
BENTLEY, J .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1984, 67 (11) :732-740
[10]   INFLUENCE OF GRAIN-SIZE, FREE SILICON CONTENT AND TEMPERATURE ON THE STRENGTH AND TOUGHNESS OF REACTION-BONDED SILICON-CARBIDE [J].
CHAKRABARTI, OP ;
GHOSH, S ;
MUKERJI, J .
CERAMICS INTERNATIONAL, 1994, 20 (05) :283-286