Deep Learning-Based Bootstrap Detection Scheme for Digital Broadcasting System

被引:2
|
作者
Kang, Tae-Hoon [1 ,2 ]
Lee, Won-Seok [1 ,2 ]
Baek, Myung-Sun [3 ]
Bae, Byungjun [3 ]
Song, Hyoung-Kyu [1 ,2 ]
机构
[1] Sejong Univ, Dept Informat & Commun Engn, Seoul 05006, South Korea
[2] Sejong Univ, Dept Convergence Engn Intelligent Drone, Seoul 05006, South Korea
[3] Elect & Telecommun Res Inst ETRI, Daejeon 34129, South Korea
关键词
Deep learning; Signal detection; Training; Receivers; Broadcasting; Time-domain analysis; Channel estimation; ATSC; 3; 0; bootstrap; deep learning; convolutional neural network; signal detection; broadcasting; CHANNEL ESTIMATION; SIGNAL-DETECTION;
D O I
10.1109/ACCESS.2021.3051906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the advanced television systems committee (ATSC) 3.0 system, the concept of flexibility is significant for supporting backward compatibility within the same ATSC 3.0 system. However, since the conventional bootstrap signal detection scheme is difficult to support the flexibility, the conventional bootstrap signal detection scheme should be newly designed according to the change of version. In this paper, a convolution neural network (CNN) model for bootstrap signal detection in ATSC 3.0 is proposed to maintain the flexibility of bootstrap. Additionally, for minimizing the loss of error performance of CNN-based bootstrap detection scheme, this paper proposes two dimensional alternate array to utilize the correlation of the adjacent bootstrap symbol and proposes the offline learning method using the bootstrap signal corrupted by noise to improve the error performance.
引用
收藏
页码:19562 / 19571
页数:10
相关论文
共 50 条
  • [31] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [32] A Deep Learning-Based Sepsis Estimation Scheme
    Al-Mualemi, Bilal Yaseen
    Lu, Lu
    IEEE ACCESS, 2021, 9 : 5442 - 5452
  • [33] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123
  • [34] HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
    Berguiga, Abdelwahed
    Harchay, Ahlem
    Massaoudi, Ayman
    IEEE ACCESS, 2025, 13 : 32863 - 32882
  • [35] Effectiveness of an Adaptive Deep Learning-Based Intrusion Detection System
    Villegas-Ch, William
    Govea, Jaime
    Gutierrez, Rommel
    Navarro, Alexandra Maldonado
    Mera-Navarrete, Aracely
    IEEE ACCESS, 2024, 12 : 184010 - 184027
  • [36] A Comparative Study of Deep Learning-Based Vulnerability Detection System
    Li, Zhen
    Zou, Deqing
    Tang, Jing
    Zhang, Zhihao
    Sun, Mingqian
    Jin, Hai
    IEEE ACCESS, 2019, 7 : 103184 - 103197
  • [37] μVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection
    Zou, Deqing
    Wang, Sujuan
    Xu, Shouhuai
    Li, Zhen
    Jin, Hai
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2021, 18 (05) : 2224 - 2236
  • [38] Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems
    Hassan, Hassan A.
    Mohamed, Mohamed A.
    Essai, Mohamed H.
    Esmaiel, Hamada
    Mubarak, Ahmed S.
    Omer, Osama A.
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2023, 74 (03): : 167 - 176
  • [39] Deep Learning-Based Joint NOMA Signal Detection and Power Allocation in Cognitive Radio Networks
    Kumar, Ashok
    Kumar, Krishan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (04) : 1743 - 1752
  • [40] An efficient deep learning-based scheme for web spam detection in IoT environment
    Makkar, Aaisha
    Kumar, Neeraj
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 108 : 467 - 487