Estimation and prediction of time-varying GARCH models through a state-space representation: a computational approach

被引:6
作者
Ferreira, Guillermo [1 ]
Navarrete, Jean P. [2 ]
Rodriguez-Cortes, Francisco J. [3 ]
Mateu, Jorge [3 ]
机构
[1] Univ Concepcion, Dept Stat, Concepcion, Chile
[2] Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
[3] Univ Jaume 1, Dept Math, Castellon de La Plana, Spain
关键词
GARCH models; local stationarity; long-range dependence; state-space representation; time-varying models; BOOTSTRAP PREDICTION; FORECAST INTERVALS; KALMAN FILTER; ARCH; VOLATILITY; VARIANCE; SERIES;
D O I
10.1080/00949655.2017.1334778
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a state-space approach for GARCH models with time-varying parameters able to deal with non-stationarity that is usually observed in a wide variety of time series. The parameters of the non-stationary model are allowed to vary smoothly over time through non-negative deterministic functions. We implement the estimation of the time-varying parameters in the time domain through Kalman filter recursive equations, finding a state-space representation of a class of time-varying GARCH models. We provide prediction intervals for time-varying GARCH models and, additionally, we propose a simple methodology for handling missing values. Finally, the proposed methodology is applied to the Chilean Stock Market (IPSA) and to the American Standard&Poor's 500 index (S&P500).
引用
收藏
页码:2430 / 2449
页数:20
相关论文
共 50 条
[21]   The kalman filter approach for time-varying β estimation [J].
Gastaldi, Massimo ;
Nardecchia, Annamaria .
2003, Taylor and Francis Inc. (43) :1033-1042
[22]   Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle [J].
Mariam Camarero ;
Juan Sapena ;
Cecilio Tamarit .
Computational Economics, 2020, 56 :87-114
[23]   Linear time-varying regression with Copula-DCC-GARCH models for volatility [J].
Kim, Jong-Min ;
Jung, Hojin .
ECONOMICS LETTERS, 2016, 145 :262-265
[24]   Estimation of market efficiency process within time-varying autoregressive models by extended Kalman filtering approach [J].
Kulikova, M. V. ;
Kulikov, G. Yu. .
DIGITAL SIGNAL PROCESSING, 2022, 128
[25]   Adaptive estimation of AR (∞) models with time-varying variances [J].
Zhang, Erhua ;
Wu, Jilin .
ECONOMICS LETTERS, 2020, 197
[26]   Wavelet estimation for factor models with time-varying loadings [J].
Humberto Catano, Duvan ;
Vladimir Rodriguez-Caballero, C. ;
Pena, Daniel ;
Chiann, Chang .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
[27]   Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein-Horioka Puzzle [J].
Camarero, Mariam ;
Sapena, Juan ;
Tamarit, Cecilio .
COMPUTATIONAL ECONOMICS, 2020, 56 (01) :87-114
[28]   Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions [J].
Alptekin, Aynur ;
Broadstock, David C. ;
Chen, Xiaoqi ;
Wang, Dong .
ENERGY ECONOMICS, 2019, 82 :26-41
[29]   ESTIMATION AND HEDGING EFFECTIVENESS OF TIME-VARYING HEDGE RATIO: FLEXIBLE BIVARIATE GARCH APPROACHES [J].
Park, Sung Yong ;
Jei, Sang Young .
JOURNAL OF FUTURES MARKETS, 2010, 30 (01) :71-99
[30]   FAST LIKELIHOOD EVALUATION AND PREDICTION FOR NONSTATIONARY STATE-SPACE MODELS [J].
DEJONG, P ;
CHUCHUNLIN, S .
BIOMETRIKA, 1994, 81 (01) :133-142