3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction

被引:76
作者
Appuhamillage, Gayan A. [1 ]
Reagan, John C. [2 ]
Khorsandi, Sina [1 ]
Davidson, Joshua R. [1 ]
Voit, Walter [3 ,4 ]
Smaldone, Ronald A. [1 ]
机构
[1] Univ Texas Dallas, Dept Chem & Biochem, 800 West Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Biomed Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Dept Mech Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
[4] Univ Texas Dallas, Dept Mat Sci & Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
关键词
COVALENT CHEMISTRY; THERMAL-PROPERTIES; POLYMERS; NANOCOMPOSITE; RADIATION; ABS;
D O I
10.1039/c7py00310b
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Here we report a 3D printable polymer that retains uniform mechanical strength after printing and can be used with a conventional fused filament fabrication (FFF) printer. To achieve this, a synthetic polymer containing dynamic Diels-Alder functionality was blended with commercially available polylactic acid (PLA). This new polymer contains cross-links that are reversible at the temperatures typically used for FFF 3D printers. By increasing the cross-link density of the polymer system, we were able to dramatically improve both ultimate strength and toughness along the interfilament junctions of the printed material up to similar to 290% and similar to 1150% respectively. The final achieved ultimate strength and toughness values for the optimized system are isotropic within error along the three representative print directions X, Y, and Z. Self-healing studies on the Z print direction of the optimized blend showed a 77% recovery of the ultimate strength vs. control PLA having only a 6% recovery, further proving the advanced interfilamentous adhesion via the fmDA dynamics.
引用
收藏
页码:2087 / 2092
页数:6
相关论文
共 35 条
[1]   Manufacture of an Unmanned Aerial Vehicle (UAV) for Advanced Project Design using 3D Printing technology [J].
Ahmed, N. A. ;
Page, J. R. .
ADVANCED DESIGN AND MANUFACTURING TECHNOLOGY III, PTS 1-4, 2013, 397-400 :970-980
[2]   Anisotropic material properties of fused deposition modeling ABS [J].
Ahn, SH ;
Montero, M ;
Odell, D ;
Roundy, S ;
Wright, PK .
RAPID PROTOTYPING JOURNAL, 2002, 8 (04) :248-257
[3]  
[Anonymous], 2013, Fabricated: The New World of 3D Printing
[4]   A Dual-Cure, Solid-State Photoresist Combining a Thermoreversible Diels-Alder Network and a Chain Growth Acrylate Network [J].
Berg, Gayla J. ;
Gong, Tao ;
Fenoli, Christopher R. ;
Bowman, Christopher N. .
MACROMOLECULES, 2014, 47 (10) :3473-3482
[5]   COMPARISON OF PHYSICAL-PROPERTIES OF RADIATION AND SULFUR-CURED POLY(BUTADIENE-CO-STYRENE) [J].
BOHM, GGA ;
DETRANO, M ;
PEARSON, DS ;
CARTER, DR .
JOURNAL OF APPLIED POLYMER SCIENCE, 1977, 21 (12) :3193-3209
[6]   Substituent Effects on the Reversibility of Furan-Maleimide Cycloadditions [J].
Boutelle, Robert C. ;
Northrop, Brian H. .
JOURNAL OF ORGANIC CHEMISTRY, 2011, 76 (19) :7994-8002
[7]   State-of-the-Art Analytical Methods for Assessing Dynamic Bonding Soft Matter Materials [J].
Brandt, Josef ;
Oehlenschlaeger, Kim K. ;
Schmidt, Friedrich Georg ;
Barner-Kowollik, Christopher ;
Lederer, Albena .
ADVANCED MATERIALS, 2014, 26 (33) :5758-5785
[8]   Dependence of mechanical properties of polyamide components on build parameters in the SLS process [J].
Caulfield, B. ;
McHugh, P. E. ;
Lohfeld, S. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 182 (1-3) :477-488
[9]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[10]   Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials [J].
Davidson, Joshua R. ;
Appuhamillage, Gayan A. ;
Thompson, Christina M. ;
Voit, Walter ;
Smaldone, Ronald A. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (26) :16961-16966