Multivalue collocation methods free from order reduction

被引:16
作者
D'Ambrosio, Raffaele [1 ]
Paternoster, Beatrice [2 ]
机构
[1] Univ Aquila, Dept Engn & Comp Sci & Math, Laquila, Italy
[2] Univ Salerno, Dept Math, Fisciano, Italy
关键词
Stiff problems; Multivalue numerical methods; Collocation methods; Order reduction;
D O I
10.1016/j.cam.2019.112515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces multivalue collocation methods for the numerical solution of stiff problems. The presented approach does not exhibit the phenomenon of order reduction, typical of collocation based Runge-Kutta methods applied to stiff systems, since the introduced methods have uniform effective order of convergence on the overall integration interval. Examples of methods as well as numerical experiments on a selection of stiff problems are given. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
Burrage K., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P185, DOI 10.1007/BF01933191
[2]   Exponentially fitted IMEX methods for advection-diffusion problems [J].
Cardone, Angelamaria ;
D'Ambrosio, Raffaele ;
Paternoster, Beatrice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 :100-108
[3]   Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations [J].
Cash, JR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2032) :797-815
[4]   Long-Term Stability of Multi-Value Methods for Ordinary Differential Equations [J].
D'Ambrosio, R. ;
Hairer, E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (03) :627-640
[5]   G-symplecticity implies conjugate-symplecticity of the underlying one-step method [J].
D'Ambrosio, R. ;
Hairer, E. ;
Zbinden, C. J. .
BIT NUMERICAL MATHEMATICS, 2013, 53 (04) :867-872
[6]   General linear methods for y"=f(y(t)) [J].
D'Ambrosio, R. ;
Esposito, E. ;
Paternoster, B. .
NUMERICAL ALGORITHMS, 2012, 61 (02) :331-349
[7]   Two-step almost collocation methods for ordinary differential equations [J].
D'Ambrosio, R. ;
Ferro, M. ;
Jackiewicz, Z. ;
Paternoster, B. .
NUMERICAL ALGORITHMS, 2010, 53 (2-3) :195-217
[8]   Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems [J].
D'Ambrosio, Raffaele ;
Moccaldi, Martina ;
Paternoster, Beatrice .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 226 :55-66
[9]   Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts [J].
D'Ambrosio, Raffaele ;
Moccaldi, Martina ;
Paternoster, Beatrice .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) :1029-1042
[10]   Numerical solution of reaction-diffusion systems of λ-ω type by trigonometrically fitted methods [J].
D'Ambrosio, Raffaele ;
Paternoster, Beatrice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 294 :436-445