A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour

被引:93
作者
Carinena, Jose F.
Ranada, Manuel F. [1 ]
Santander, Mariano
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Valladolid, Fac Ciencias, Dept Fis Teor, E-47011 Valladolid, Spain
关键词
non-linear oscillators; quantization; position-dependent mass; Schrodinger equation; hermite polynomials; intertwined Hamiltonians; shape-invariant potentials;
D O I
10.1016/j.aop.2006.03.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum version of a non-linear oscillator, previously analyzed at the classical level, is studied. This is a problem of quantization of a system with position-dependent mass of the form m = (1 + lambda x(2))(-1) and with a lambda-dependent non-polynomial rational potential. This -dependent system can be considered as a deformation of the harmonic oscillator in the sense that for lambda -> 0 all the characteristics of the linear oscillator are recovered. First, the lambda-dependent Schrodinger equation is exactly solved as a Sturm-Liouville problem, and the lambda-dependent eigenenergies and eigenfunctions are obtained for both;. lambda > 0 and lambda < 0. The lambda-dependent wave functions appear as related with a family of orthogonal polynomials that can be considered as lambda-deformations of the standard Hermite polynomials. In the second part, the lambda-dependent Schrodinger equation is solved by using the Schrodinger factorization method, the theory of intertwined Hamiltonians, and the property of shape invariance as an approach. Finally, the new family of orthogonal polynomials is studied. We prove the existence of a lambda-dependent Rodrigues formula, a generating function and lambda-dependent recursion relations between polynomials of different orders. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:434 / 459
页数:26
相关论文
共 67 条
  • [1] Aldaya V., 1996, Reports on Mathematical Physics, V37, P387, DOI 10.1016/0034-4877(96)84075-4
  • [2] THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - GENERALIZED HERMITE-POLYNOMIALS
    ALDAYA, V
    BISQUERT, J
    NAVARROSALAS, J
    [J]. PHYSICS LETTERS A, 1991, 156 (7-8) : 381 - 385
  • [3] Group approach to the quantization of the Poschl-Teller dynamics
    Aldaya, V
    Guerrero, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (31): : 6939 - 6953
  • [4] A NOTE ON THE SCHRODINGER-EQUATION FOR THE X2 + LAMBDA-X2/(1 + GX2) POTENTIAL
    BESSIS, N
    BESSIS, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) : 2780 - 2785
  • [5] EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS
    BISWAS, SN
    DATTA, K
    SAXENA, RP
    SRIVASTAVA, PK
    VARMA, VS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) : 1190 - 1195
  • [6] THE SCHRODINGER-EQUATION FOR THE CHI-2+LAMBDA-CHI-2/(1+G-CHI-2) INTERACTION
    BLECHER, MH
    LEACH, PGL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17): : 5923 - 5927
  • [7] DEFORMED OSCILLATOR ALGEBRAS FOR 2-DIMENSIONAL QUANTUM SUPERINTEGRABLE SYSTEMS
    BONATSOS, D
    DASKALOYANNIS, C
    KOKKOTAS, K
    [J]. PHYSICAL REVIEW A, 1994, 50 (05): : 3700 - 3709
  • [8] QUANTUM-ALGEBRAIC DESCRIPTION OF QUANTUM SUPERINTEGRABLE SYSTEMS IN 2 DIMENSIONS
    BONATSOS, D
    DASKALOYANNIS, C
    KOKKOTAS, K
    [J]. PHYSICAL REVIEW A, 1993, 48 (05): : R3407 - R3410
  • [9] EXACT SOLUTION OF THE SCHRODINGER-EQUATION FOR THE CENTRAL NONPOLYNOMIAL POTENTIAL V(R)=R2+LAMBDAR2/(1+GR2) IN 2 AND 3 DIMENSIONS
    BOSE, SK
    VARMA, N
    [J]. PHYSICS LETTERS A, 1989, 141 (3-4) : 141 - 146
  • [10] SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION
    CALOGERO, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) : 2191 - &