Insights into the origin of the tendency of the PI3-SH3 domain to form amyloid fibrils

被引:39
作者
Ventura, S [1 ]
Lacroix, E [1 ]
Serrano, L [1 ]
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
关键词
amyloid formation; protein engineering; protein folding; conformational stability; SH3; domain;
D O I
10.1016/S0022-2836(02)00783-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SH3 domain of the p85alpha subunit of phosphatidylinositol 3 kinase has been found to form amyloid fibrils in vitro under acidic conditions. PI3-SH3 is peculiar due to a large insertion of 15 amino acid residues in the n-Src loop when compared with more canonical members of the family. Spectrin-SH3 (SPC-SH3) with a shorter loop does not form fibrils under any of our conditions tested. Thus, it could be that the longer loop could play a role in amyloid formation. To investigate this we have engineered two chimeras containing the common core of the PI3-SH3 and SPC-SH3 with an exchanged n-Src loop. Thermodynamic and kinetic analyses show that the two chimeras are less stable than the parent proteins, but useful for our comparative purposes they have similar stability. Neither stability, nor folding rates, or pH transition can be invoked as being responsible for the amyloid formation in the PI3-SH3 domain. Substitution of the long n-Src loop in PI3-SH3 by that of SPC-SH3 does not prevent fibril formation. The SPC-SH3 with the PI3-SH3 n-Src loop is in an A-state at low pH and forms beta-sheet amorphous aggregates, but not amyloid fibrils. Thus, we conclude that, for a protein to form ordered fibrils, a delicate balance between solubility of non-native states to allow efficient nucleation and the formation of amorphous aggregates, must be achieved. It is the amino acid residue sequence of the protein and probably its parts that play a determinant role in shifting this balance in one direction or the other. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1147 / 1158
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 1997, Journal of family nursing
[2]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[3]   Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants [J].
Canet, D ;
Sunde, M ;
Last, AM ;
Miranker, A ;
Spencer, A ;
Robinson, CV ;
Dobson, CM .
BIOCHEMISTRY, 1999, 38 (20) :6419-6427
[4]  
Chen YJ, 1996, PROTEINS, V26, P465
[5]   Computer-aided design of β-sheet peptides [J].
de la Paz, ML ;
Lacroix, E ;
Ramírez-Alvarado, M ;
Serrano, L .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (01) :229-246
[6]  
del Pino IMP, 2000, PROTEINS, V40, P58, DOI 10.1002/(SICI)1097-0134(20000701)40:1<58::AID-PROT80>3.0.CO
[7]  
2-M
[8]   Protein misfolding, evolution and disease [J].
Dobson, CM .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (09) :329-332
[9]   The structural basis of protein folding and its links with human disease [J].
Dobson, CM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1406) :133-145
[10]   SOLVATION ENERGY IN PROTEIN FOLDING AND BINDING [J].
EISENBERG, D ;
MCLACHLAN, AD .
NATURE, 1986, 319 (6050) :199-203