Regularity and Rigidity for Nonlocal Curvatures in Conformal Geometry

被引:0
作者
Chen, Wenxiong [1 ]
Zhang, Ruobing [2 ]
机构
[1] Yeshiva Univ, Dept Math, New York, NY 10033 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
JOURNAL OF MATHEMATICAL STUDY | 2020年 / 53卷 / 04期
基金
中国国家自然科学基金;
关键词
Regularity; spherical rigidity; nonlocal curvatures; conformal geometry; CLASSIFICATION; UNIQUENESS; EQUATION;
D O I
10.4208/jms.v53n4.20.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will explore the geometric effects of conformally covariant operators and the induced nonlinear curvature equations in certain nonlocal nature. Mainly, we will prove some regularity and rigidity results for the distributional solutions to those equations.
引用
收藏
页码:436 / 470
页数:35
相关论文
共 28 条
[1]  
[Anonymous], 1972, Grundlehren Math. Wiss.
[2]   DIFFERENTIAL-OPERATORS CANONICALLY ASSOCIATED TO A CONFORMAL STRUCTURE [J].
BRANSON, TP .
MATHEMATICA SCANDINAVICA, 1985, 57 (02) :293-345
[3]   On Fractional GJMS Operators [J].
Case, Jeffrey S. ;
Chang, Sun-Yung Alice .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (06) :1017-1061
[4]  
Chang S.-Y. A., 2008, J. Math. Sci. (N.Y.), V149, P1755
[5]   Some Progress in Conformal Geometry [J].
Chang, Sun-Yung A. ;
Qing, Jie ;
Yang, Paul .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[6]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[8]  
Chang SYA, 1997, MATH RES LETT, V4, P91, DOI 10.4310/MRL.1997.v4.n1.a9
[9]   An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature [J].
Chang, SYA ;
Gursky, MJ ;
Yang, PC .
ANNALS OF MATHEMATICS, 2002, 155 (03) :709-787
[10]   A note on a class of higher order conformally covariant equations [J].
Chang, SYA ;
Chen, WX .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (02) :275-281