Existence of weak solutions for the nonlocal energy-weighted fractional reaction-diffusion equations

被引:0
作者
Chang, Mao-Sheng [1 ]
Wu, Hsi-Chun [2 ]
机构
[1] Fu Jen Catholic Univ, Dept Math, New Taipei 24205, Taiwan
[2] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
Reaction-diffusion equation; Nonlocal operators; Gradient flow; Fractional Laplacian; POHOZAEV IDENTITY; DISPERSION; REGULARITY;
D O I
10.1007/s00028-019-00494-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any bounded smooth domain Omega subset of R-n, we establish the global existence of weak solutions u is an element of L-2(0, T; H-Omega,0(s)) with u(t) is an element of L-2( 0, T; H-Omega(-s)) to the initial boundary value problem of the nonlocal energy-weighted fractional reaction-diffusion equations for any initial data u(0) is an element of H-Omega,0(s).
引用
收藏
页码:883 / 914
页数:32
相关论文
共 21 条
  • [1] [Anonymous], 1998, TEXTS APPL MATH
  • [2] Application of a fractional advection-dispersion equation
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1403 - 1412
  • [3] Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
  • [4] Image Denoising Methods. A New Nonlocal Principle
    Buades, A.
    Coll, B.
    Morel, J. M.
    [J]. SIAM REVIEW, 2010, 52 (01) : 113 - 147
  • [5] Global Existence of Weak Solutions for the Nonlocal Energy-weighted Reaction-diffusion Equations
    Chang, Mao-Sheng
    Wu, Hsi-Chun
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03): : 695 - 723
  • [6] NONLOCAL DISPERSION IN MEDIA WITH CONTINUOUSLY EVOLVING SCALES OF HETEROGENEITY
    CUSHMAN, JH
    GINN, TR
    [J]. TRANSPORT IN POROUS MEDIA, 1993, 13 (01) : 123 - 138
  • [7] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [8] Nonlocal problems with Neumann boundary conditions
    Dipierro, Serena
    Ros-Oton, Xavier
    Valdinoci, Enrico
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (02) : 377 - 416
  • [9] Evans L. C., 2010, Partial Differential Equations, DOI DOI 10.1112/BLMS/20.4.375
  • [10] Gatto Paolo, 2014, J SCI COMPUTING