Existence of weak solutions for the nonlocal energy-weighted fractional reaction-diffusion equations

被引:0
作者
Chang, Mao-Sheng [1 ]
Wu, Hsi-Chun [2 ]
机构
[1] Fu Jen Catholic Univ, Dept Math, New Taipei 24205, Taiwan
[2] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
Reaction-diffusion equation; Nonlocal operators; Gradient flow; Fractional Laplacian; POHOZAEV IDENTITY; DISPERSION; REGULARITY;
D O I
10.1007/s00028-019-00494-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any bounded smooth domain Omega subset of R-n, we establish the global existence of weak solutions u is an element of L-2(0, T; H-Omega,0(s)) with u(t) is an element of L-2( 0, T; H-Omega(-s)) to the initial boundary value problem of the nonlocal energy-weighted fractional reaction-diffusion equations for any initial data u(0) is an element of H-Omega,0(s).
引用
收藏
页码:883 / 914
页数:32
相关论文
共 21 条
[1]  
[Anonymous], 1998, TEXTS APPL MATH
[2]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[3]  
Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
[4]   Image Denoising Methods. A New Nonlocal Principle [J].
Buades, A. ;
Coll, B. ;
Morel, J. M. .
SIAM REVIEW, 2010, 52 (01) :113-147
[5]   Global Existence of Weak Solutions for the Nonlocal Energy-weighted Reaction-diffusion Equations [J].
Chang, Mao-Sheng ;
Wu, Hsi-Chun .
TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03) :695-723
[6]   NONLOCAL DISPERSION IN MEDIA WITH CONTINUOUSLY EVOLVING SCALES OF HETEROGENEITY [J].
CUSHMAN, JH ;
GINN, TR .
TRANSPORT IN POROUS MEDIA, 1993, 13 (01) :123-138
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]   Nonlocal problems with Neumann boundary conditions [J].
Dipierro, Serena ;
Ros-Oton, Xavier ;
Valdinoci, Enrico .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (02) :377-416
[9]  
Evans L. C., 2010, Partial Differential Equations, DOI DOI 10.1112/BLMS/20.4.375
[10]  
Gatto Paolo, 2014, J SCI COMPUTING