Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state

被引:24
作者
Astrakharchik, G. E. [1 ]
Boronat, J. [1 ]
Kurbakov, I. L. [2 ]
Lozovik, Yu. E. [2 ]
Mazzanti, F. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08034 Barcelona, Spain
[2] Inst Spect, RU-142190 Troitsk, Moscow Region, Russia
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 01期
关键词
MANY-BODY PROBLEM; EINSTEIN CONDENSATION; GROUND-STATE; SYSTEM; FERMIONS;
D O I
10.1103/PhysRevA.81.013612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of nonuniversal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the nonuniversal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the nonuniversal terms in experiments with trapped gases is also discussed.
引用
收藏
页数:10
相关论文
共 60 条
[21]   BOSE-EINSTEIN GAS WITH REPULSIVE INTERACTIONS - GENERAL THEORY [J].
BRUECKNER, KA ;
SAWADA, K .
PHYSICAL REVIEW, 1957, 106 (06) :1117-1127
[22]   Strongly correlated 2D quantum phases with cold polar molecules:: Controlling the shape of the interaction potential [J].
Buechler, H. P. ;
Demler, E. ;
Lukin, M. ;
Micheli, A. ;
Prokof'ev, N. ;
Pupillo, G. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[23]   Dilute quantum droplets [J].
Bulgac, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :1-050402
[24]   Dilute Bose gas in two dimensions: Density expansions and the Gross-Pitaevskii equation [J].
Cherny, AY ;
Shanenko, AA .
PHYSICAL REVIEW E, 2001, 64 (02) :4-271054
[25]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[26]   UN SYSTEME A UNE DIMENSION DE FERMIONS EN INTERACTION [J].
GAUDIN, M .
PHYSICS LETTERS A, 1967, A 24 (01) :55-&
[27]   RELATIONSHIP BETWEEN SYSTEMS OF IMPENETRABLE BOSONS AND FERMIONS IN ONE DIMENSION [J].
GIRARDEAU, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (06) :516-523
[28]   Realization of Bose-Einstein condensates in lower dimensions -: art. no. 130402 [J].
Görlitz, A ;
Vogels, JM ;
Leanhardt, AE ;
Raman, C ;
Gustavson, TL ;
Abo-Shaeer, JR ;
Chikkatur, AP ;
Gupta, S ;
Inouye, S ;
Rosenband, T ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2001, 87 (13) :130402/1-130402/4
[29]   Exploring phase coherence in a 2D lattice of Bose-Einstein condensates -: art. no. 160405 [J].
Greiner, M ;
Bloch, I ;
Mandel, O ;
Hänsch, TW ;
Esslinger, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[30]   EFFECTIVE HARMONIC-FLUID APPROACH TO LOW-ENERGY PROPERTIES OF ONE-DIMENSIONAL QUANTUM FLUIDS [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1840-1843