Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state

被引:24
作者
Astrakharchik, G. E. [1 ]
Boronat, J. [1 ]
Kurbakov, I. L. [2 ]
Lozovik, Yu. E. [2 ]
Mazzanti, F. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08034 Barcelona, Spain
[2] Inst Spect, RU-142190 Troitsk, Moscow Region, Russia
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 01期
关键词
MANY-BODY PROBLEM; EINSTEIN CONDENSATION; GROUND-STATE; SYSTEM; FERMIONS;
D O I
10.1103/PhysRevA.81.013612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of nonuniversal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the nonuniversal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the nonuniversal terms in experiments with trapped gases is also discussed.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Precision measurements of collective oscillations in the BEC-BCS crossover [J].
Altmeyer, A. ;
Riedl, S. ;
Kohstall, C. ;
Wright, M. J. ;
Geursen, R. ;
Bartenstein, M. ;
Chin, C. ;
Denschlag, J. Hecker ;
Grimm, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]  
[Anonymous], 2013, COURSE THEORETICAL P, DOI DOI 10.1016/C2013-0-02793-4
[4]   Ground-state properties of a one-dimensional system of dipoles [J].
Arkhipov, AS ;
Astrakharchik, GE ;
Belikov, AV ;
Lozovik, YE .
JETP LETTERS, 2005, 82 (01) :39-43
[5]   Weakly interacting two-dimensional system of dipoles: Limitations of the mean-field theory [J].
Astrakharchik, G. E. ;
Boronat, J. ;
Casulleras, J. .
PHYSICAL REVIEW A, 2007, 75 (06)
[6]   Off-diagonal correlations of the Calogero-Sutherland model [J].
Astrakharchik, G. E. ;
Gangardt, D. M. ;
Lozovik, Yu. E. ;
Sorokin, I. A. .
PHYSICAL REVIEW E, 2006, 74 (02)
[7]   Quantum phase transition in a two-dimensional system of dipoles [J].
Astrakharchik, G. E. ;
Boronat, J. ;
Kurbakov, I. L. ;
Lozovik, Yu. E. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[8]   Correlation functions of a Lieb-Liniger Bose gas [J].
Astrakharchik, G. E. ;
Giorgini, S. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (10) :S1-S12
[9]   Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods [J].
Astrakharchik, G. E. ;
Boronat, J. ;
Casulleras, J. ;
Kurbakov, I. L. ;
Lozovik, Yu. E. .
PHYSICAL REVIEW A, 2009, 79 (05)
[10]   Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional Bose gases [J].
Astrakharchik, GE ;
Boronat, J ;
Casulleras, J ;
Giorgini, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)