Biased Discriminant Euclidean Embedding for Content-Based Image Retrieval

被引:115
|
作者
Bian, Wei [1 ]
Tao, Dacheng [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
关键词
Content-based image retrieval; dimensionality reduction; manifold learning; relevance feedback; CLASSIFICATION;
D O I
10.1109/TIP.2009.2035223
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algorithms capture user's preferences and bridge the semantic gap. However, there is still a big room to further the RF performance, because the popular RF algorithms ignore the manifold structure of image low-level visual features. In this paper, we propose the biased discriminative Euclidean embedding (BDEE) which parameterises samples in the original high-dimensional ambient space to discover the intrinsic coordinate of image low-level visual features. BDEE precisely models both the intraclass geometry and interclass discrimination and never meets the undersampled problem. To consider unlabelled samples, a manifold regularization-based item is introduced and combined with BDEE to form the semi-supervised BDEE, or semi-BDEE for short. To justify the effectiveness of the proposed BDEE and semi-BDEE, we compare them against the conventional RF algorithms and show a significant improvement in terms of accuracy and stability based on a subset of the Corel image gallery.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 50 条
  • [41] Content-based image retrieval methods
    Vassilieva, N. S.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (03) : 158 - 180
  • [42] A content-based image retrieval system
    Huang, CL
    Huang, DH
    IMAGE AND VISION COMPUTING, 1998, 16 (03) : 149 - 163
  • [43] Learning in content-based image retrieval
    Huang, TS
    Zhou, XS
    Nakazato, M
    Wu, Y
    Cohen, I
    2ND INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, PROCEEDINGS, 2002, : 155 - 162
  • [44] Gaps in content-based image retrieval
    Deserno, Thomas M.
    Antani, Sameer
    Long, Rodney
    MEDICAL IMAGING 2007: PACS AND IMAGING INFORMATICS, 2007, 6516
  • [45] THE DRUG TABLET IMAGE RETRIEVAL SYSTEM BASED ON CONTENT-BASED IMAGE RETRIEVAL
    Yu, Chiu-Chung
    Wen, Che-Yen
    Lu, Chuan-Pin
    Chen, Yung-Fou
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (7A): : 4497 - 4508
  • [46] Image Features Optimizing for Content-Based Image Retrieval
    Shi, Zhiping
    Liu, Xi
    He, Qing
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 260 - 264
  • [47] Medical image description in content-based image retrieval
    Hong, Shao
    Cui Wen-Cheng
    Tang Li
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6336 - 6339
  • [48] Content-based image retrieval as a tool for image understanding
    Pauwels, EJ
    Frederix, G
    MULTIMEDIA STORAGE AND ARCHIVING SYSTEMS IV, 1999, 3846 : 316 - 327
  • [49] A Content-based Image Retrieval System with Image Semantic
    Ma Ying
    Zhang Laomo
    Ma Jinxing
    MICRO NANO DEVICES, STRUCTURE AND COMPUTING SYSTEMS, 2011, 159 : 638 - 643
  • [50] Fuzzy content-based retrieval in image databases
    Gokcen, I
    Yazici, A
    Buckles, BP
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1909 : 226 - 237