New Double Bifurcation of Nilpotent Focus

被引:13
作者
Li, Feng [1 ]
Li, Hongwei [1 ]
Liu, Yuanyuan [1 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 04期
基金
中国国家自然科学基金;
关键词
Nilpotent singular point; limit cycle; bifurcation; LIMIT-CYCLES; POINTS;
D O I
10.1142/S021812742150053X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new bifurcation phenomenon of nilpotent singular point is analyzed. A nilpotent focus or center of the planar systems with 3-multiplicity can be broken into two complex singular points and a second order elementary weak focus. Then, two more limit cycles enclosing the second order elementary weak focus can bifurcate through the multiple Hopf bifurcation.
引用
收藏
页数:4
相关论文
共 13 条
[1]   Generating limit cycles from a nilpotent critical point via normal forms [J].
Alvarez, MJ ;
Gasull, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :271-287
[2]  
Amelikin BB., 1982, Nonlinear Oscillations in Second Order Systems
[3]   On the number of limit cycles near a homoclinic loop with a nilpotent singular point [J].
An, Yulian ;
Han, Maoan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) :3194-3247
[4]   Limit Cycle Bifurcations from a Nilpotent Focus or Center of Planar Systems [J].
Han, Maoan ;
Romanovski, Valery G. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[5]   Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields [J].
Li, Feng ;
Liu, Yirong ;
Liu, Yuanyuan ;
Yu, Pei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (10) :4965-4992
[6]   Analytic Integrability of Two Lopsided Systems [J].
Li, Feng ;
Yu, Pei ;
Liu, Yirong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02)
[7]  
Liu Y., 1999, J CENT SOUTH UNIV T, V30, P622
[8]  
Liu Y. R., 2015, INT J BIFURCAT CHAOS, V25
[9]   ON THIRD-ORDER NILPOTENT CRITICAL POINTS: INTEGRAL FACTOR METHOD [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05) :1293-1309
[10]   BIFURCATIONS OF LIMIT CYCLES CREATED BY A MULTIPLE NILPOTENT CRITICAL POINT OF PLANAR DYNAMICAL SYSTEMS [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02) :497-504