Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography

被引:38
作者
Setu, Md Asif Khan [1 ,2 ]
Horstmann, Jens [1 ]
Schmidt, Stefan [4 ]
Stern, Michael E. [1 ,2 ,3 ]
Steven, Philipp [1 ,2 ]
机构
[1] Univ Cologne, Univ Hosp Cologne, Fac Med, Dept Ophthalmol, D-50937 Cologne, Germany
[2] Univ Hosp Cologne, Div Dry Eye & Ocular GvHD, D-50937 Cologne, Germany
[3] ImmunEyez LLC, Irvine, CA USA
[4] Heidelberg Engn GmbH, D-69115 Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
INTERNATIONAL WORKSHOP; DYSFUNCTION; PATHOPHYSIOLOGY; RELIABILITY; QUALITY;
D O I
10.1038/s41598-021-87314-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meibomian glands (MG) are large sebaceous glands located below the tarsal conjunctiva and the abnormalities of these glands cause Meibomian gland dysfunction (MGD) which is responsible for evaporative dry eye disease (DED). Accurate MG segmentation is a key prerequisite for automated imaging based MGD related DED diagnosis. However, Automatic MG segmentation in infrared meibography is a challenging task due to image artifacts. A deep learning-based MG segmentation has been proposed which directly learns MG features from the training image dataset without any image pre-processing. The model is trained and evaluated using 728 anonymized clinical meibography images. Additionally, automatic MG morphometric parameters, gland number, length, width, and tortuosity assessment were proposed. The average precision, recall, and F1 score were achieved 83%, 81%, and 84% respectively on the testing dataset with AUC value of 0.96 based on ROC curve and dice coefficient of 84%. Single image segmentation and morphometric parameter evaluation took on average 1.33 s. To the best of our knowledge, this is the first time that a validated deep learning-based approach is applied in MG segmentation and evaluation for both upper and lower eyelids.
引用
收藏
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2019, OPHTHALMOLOGE, V116, P25
[2]   Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population [J].
Arita, Reiko ;
Itoh, Kouzo ;
Inoue, Kenji ;
Amano, Shiro .
OPHTHALMOLOGY, 2008, 115 (05) :911-915
[3]   Objective image analysis of the meibomian gland area [J].
Arita, Reiko ;
Suehiro, Jun ;
Haraguchi, Tsuyoshi ;
Shirakawa, Rika ;
Tokoro, Hideaki ;
Amano, Shiro .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2014, 98 (06) :746-755
[4]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[5]  
Celik Turgay., 2013, J. Optometry, V6, P194, DOI [10.1016/j.optom.2013.09.001, DOI 10.1016/J.OPTOM.2013.09.001]
[6]   TFOS DEWS II Report Executive Summary [J].
Craig, Jennifer P. ;
Nelson, J. Daniel ;
Azar, Dimitri T. ;
Belmonte, Carlos ;
Bron, Anthony J. ;
Chauhan, Sunil K. ;
de Paiva, Cintia S. ;
Gomes, Jose A. P. ;
Hammitt, Katherine M. ;
Jones, Lyndon ;
Nichols, Jason J. ;
Nichols, Kelly K. ;
Novack, Gary D. ;
Stapleton, Fiona J. ;
Willcox, Mark D. P. ;
Wolffsohn, James S. ;
Sullivan, David A. .
OCULAR SURFACE, 2017, 15 (04) :802-812
[7]   TFOS DEWS II Definition and Classification Report [J].
Craig, Jennifer P. ;
Nichols, Kelly K. ;
Akpek, Esen K. ;
Caffery, Barbara ;
Dua, Harminder S. ;
Joo, Choun-Ki ;
Liu, Zuguo ;
Nelson, J. Daniel ;
Nichols, Jason J. ;
Tsubota, Kazuo ;
Stapleton, Fiona .
OCULAR SURFACE, 2017, 15 (03) :276-283
[8]   Meibography and meibomian gland measurements in ocular graft-versus-host disease [J].
Engel, L. A. ;
Wittig, S. ;
Bock, F. ;
Sauerbier, L. ;
Scheid, C. ;
Holtick, U. ;
Chemnitz, J-M ;
Hallek, M. ;
Cursiefen, C. ;
Steven, P. .
BONE MARROW TRANSPLANTATION, 2015, 50 (07) :961-967
[9]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969
[10]  
Gerig G., 2001, LNCS, V2208, P516, DOI DOI 10.1007/3-540-45468-3_62