STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS DRIVEN BY PURELY SPATIAL NOISE

被引:25
|
作者
Lototsky, Sergey V. [1 ]
Rozovskii, Boris L. [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
generalized random elements; Malliavin calculus; Skorokhod integral; Wiener chaos; weighted spaces; SPACES; PDES;
D O I
10.1137/070698440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study bilinear stochastic parabolic and elliptic PDEs driven by purely spatial white noise. Even the simplest equations driven by this noise often do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron-Martin version of the Wiener chaos decomposition is an effective tool to study both stationary and evolution equations driven by space-only noise. The paper presents results about solvability of such equations in weighted Wiener chaos spaces and studies the long-time behavior of the solutions of evolution equations with space-only noise.
引用
收藏
页码:1295 / 1322
页数:28
相关论文
共 50 条
  • [41] A Feynman-Kac approach for the spatial derivative of the solution to the Wick stochastic heat equation driven by time homogeneous white noise
    Kim, Hyun-Jung
    Scorolli, Ramiro
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2023, 26 (03)
  • [42] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion
    Nualart, David
    Saussereau, Bruno
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 391 - 409
  • [43] Skorohod and rough integration for stochastic differential equations driven by Volterra processes
    Cass, Thomas
    Lim, Nengli
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 132 - 168
  • [44] Set-valued and fuzzy stochastic differential equations driven by semimartingales
    Malinowski, Marek T.
    Michta, Mariusz
    Sobolewska, Joanna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 204 - 220
  • [45] REGULARIZATION BY NOISE FOR ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY GAUSSIAN ROUGH PATHS
    Catellier, Remi
    Duboscq, Romain
    ANNALS OF PROBABILITY, 2025, 53 (01): : 79 - 139
  • [46] Weak solutions to coupled quadratic forward backward stochastic differential equations and Sobolev solutions to their related partial differential equations
    Elouaflin, Abouo
    Bahlali, Khaled
    Mezerdi, Brahim
    Mouchtabih, Soufiane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 12083 - 12099
  • [47] Malliavin calculus applied to optimal control of stochastic partial differential equations with jumps
    Pamen, Olivier Menoukeu
    Meyer-Brandis, Thilo
    Proske, Frank
    Salleh, Hassilah Binti
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (03) : 431 - 463
  • [48] ON THE CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH AFFINE DIFFUSION
    EIGEL, M. A. R. T. I. N.
    ERNST, O. L. I. V. E. R. G.
    SPRUNGK, B. J. O. R. N.
    TAMELLINI, L. O. R. E. N. Z. O.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 659 - 687
  • [49] Accelerating Stochastic Collocation Methods for Partial Differential Equations with Random Input Data
    Galindo, D.
    Jantsch, P.
    Websterx, C. G.
    Zhang, G.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1111 - 1137
  • [50] Robust control of parabolic stochastic partial differential equations under model uncertainty
    Baltas, Ioannis
    Xepapadeas, Anastasios
    Yannacopoulos, Athanasios N.
    EUROPEAN JOURNAL OF CONTROL, 2019, 46 : 1 - 13