Preliminary Testing to Determine the Best Process Parameters for Polymer Laser Sintering of a New Polypropylene Polymeric Material

被引:5
作者
Mwania, Fredrick M. [1 ]
Maringa, Maina [1 ]
van der Walt, Jakobus G. [1 ]
机构
[1] Cent Univ Technol, Dept Mech & Mechatron Engn, Private Bag X20539, ZA-9300 Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Compendex;
D O I
10.1155/2021/6674890
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Polymer laser sintering is an elaborate additive manufacturing technique because it is subject to process parameters and material properties. In this regard, each polymeric material necessitates a different set of process conditions. To this end, testing was done to determine the most suitable process parameters for a new commercially available polymer (Laser PP CP 60), from Diamond Plastics GmbH. It was established that the material requires slightly different settings from those provided by the supplier for the values for the removal chamber temperature, building chamber temperatures, and laser power to achieve the best mechanical properties (ultimate tensile strength). The preliminary testing indicates that the process parameters that yielded the best mechanical properties for the laser PP CP 60 powder were 125 degrees C, 125 degrees C, 0.15 mm, 250 mu m, 4500 mm/s, 34.7 W, 1500 mm/s, and 21.3 W for the removal chamber temperature, building chamber temperature layer thickness, hatch distance, scanning speed fill, laser power fill, scanning speed contour, and laser power contour, respectively.
引用
收藏
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 2014, D638 ASTM, DOI [10.1520/D0638, DOI 10.1520/D0638]
[2]   Processability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS) [J].
Berretta, S. ;
Evans, K. E. ;
Ghita, O. .
EUROPEAN POLYMER JOURNAL, 2015, 68 :243-266
[3]  
Craft G.M., 2018, THESIS U S FLORIDA
[4]  
Dehghan A., 2018, J. 3D Print. Appl., V1, P3, DOI [10.14302/issn.2831-8846.j3dpa-18-2207, DOI 10.14302/ISSN.2831-8846.J3DPA-18-2207]
[5]   Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering [J].
Drummer, Dietmar ;
Rietzel, Dominik ;
Kuehnlein, Florian .
LASER ASSISTED NET SHAPE ENGINEERING 6, PROCEEDINGS OF THE LANE 2010, PART 2, 2010, 5 :533-542
[6]   Measurement uncertainty of surface roughness measurement [J].
Farkas, G. ;
Dregelyi-Kiss, A. .
XXIII INTERNATIONAL CONFERENCE ON MANUFACTURING (MANUFACTURING 2018), 2018, 448
[7]   Laser sintering of polyamides and other polymers [J].
Goodridge, R. D. ;
Tuck, C. J. ;
Hague, R. J. M. .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (02) :229-267
[8]   An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE) [J].
Goodridge, Ruth D. ;
Hague, Richard J. M. ;
Tuck, Christopher J. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (01) :72-80
[9]   Surface quality improvement of selective laser sintered polyamide 12 by precision grinding and magnetic field-assisted finishing [J].
Guo, Jiang ;
Bai, Jiaming ;
Liu, Kui ;
Wei, Jun .
MATERIALS & DESIGN, 2018, 138 :39-45
[10]   Additive Manufacturing of Polypropylene: A Screening Design of Experiment Using Laser-Based Powder Bed Fusion [J].
Ituarte, Inigo Flores ;
Wiikinkoski, Olli ;
Jansson, Anton .
POLYMERS, 2018, 10 (12)