Finite-temperature random-phase approximation for spectroscopic properties of neon plasmas

被引:1
|
作者
Colgan, J. [1 ]
Fontes, C. J.
Csanak, G.
Collins, L. A.
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA
[3] Univ Nevada, Dept Phys, Reno, NV 89557 USA
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevA.75.024701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A finite-temperature random-phase approximation (FTRPA) is applied to calculate oscillator strengths for excitations in hot and dense plasmas. Application of the FTRPA provides a convenient, self-consistent method with which to explore coupled-channel effects of excited electrons in a dense plasma. We present FTRPA calculations that include coupled-channel effects. The inclusion of these effects is shown to cause significant differences in the oscillator strength for a prototypical case of P-1 excitation in neon when compared with single-channel and with average-atom calculations. Trends as a function of temperature and density are also discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The finite-temperature random-phase approximation for the spectroscopic properties of dense plasmas
    Colgan, J.
    Fontes, C. J.
    Csanak, G.
    Collins, L. A.
    HIGH ENERGY DENSITY PHYSICS, 2007, 3 (1-2) : 65 - 75
  • [2] Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation
    Niu, Y. F.
    Paar, N.
    Vretenar, D.
    Meng, J.
    PHYSICAL REVIEW C, 2011, 83 (04):
  • [3] APPLICATIONS OF THE FINITE-TEMPERATURE RANDOM-PHASE APPROXIMATION TO ICF PLASMAS .1. DOUBLE-DIFFERENTIAL SCATTERING CROSS-SECTIONS
    BEYNON, TD
    ODWYER, MA
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1983, 16 (06) : 977 - 994
  • [4] Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation
    Ravlic, A.
    Yuksel, E.
    Niu, Y. F.
    Colo, G.
    Khan, E.
    Paar, N.
    PHYSICAL REVIEW C, 2020, 102 (06)
  • [5] Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation
    Schenk, A
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) : 3684 - 3695
  • [6] Nondipole effects in the photoionization of neon: Random-phase approximation
    Johnson, WR
    Derevianko, A
    Cheng, KT
    Dolmatov, VK
    Manson, ST
    PHYSICAL REVIEW A, 1999, 59 (05): : 3609 - 3613
  • [7] Test of finite temperature random-phase approximation on a Lipkin model
    Hagino, K.
    Minato, F.
    PHYSICAL REVIEW C, 2009, 80 (04):
  • [8] Quasiparticles in neon using the Faddeev random-phase approximation
    Barbieri, C.
    Van Neck, D.
    Dickhoff, W. H.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [9] Nondipole effects in the photoionization of neon: Random-phase approximation
    Johnson, W.R.
    Derevianko, A.
    Cheng, K.T.
    Dolmatov, Valery K.
    Manson, Steven T.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (05):
  • [10] Electric dipole transitions in the relativistic quasiparticle random-phase approximation at finite temperature
    Kaur, Amandeep
    Yuksel, Esra
    Paar, Nils
    PHYSICAL REVIEW C, 2024, 109 (01)