Towards a high MnO2 loading and gravimetric capacity from proton-coupled Mn4+/Mn2+ reactions using a 3D free-standing conducting scaffold

被引:15
作者
Singh, Arvinder [1 ]
Sel, Ozlem [2 ]
Perrot, Hubert [2 ]
Balland, Veronique [3 ]
Limoges, Benoit [3 ]
Laberty-Robert, Christel [1 ]
机构
[1] Sorbonne Univ, CNRS, Chim Mat Condense, UMR 7574, 4 Pl Jussieu, F-75005 Paris, France
[2] Sorbonne Univ, Lab Interfaces & Syst Electrochim LISE, CNRS UMR 8235, 4 Pl Jussieu, F-75005 Paris, France
[3] Univ Paris, Lab Electrochim Mol, UMR CNRS 7591, F-75013 Paris, France
关键词
FELT ELECTRODE; ION; BATTERY; LITHIUM;
D O I
10.1039/d0ta10685b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We highlight 3D free-standing electrospun CNF electrodes as superior conductive scaffolds for the highly reversible proton-coupled MnIV (s) 4 MnII (aq) conversion in a mild aqueous buffered electrolyte (pH 5). An electrochemical quartz crystal microbalance is used to in situ monitor these conversion reactions on the non-transparent CNF electrodes. Free-standing CNFs allow for a remarkably high relative MnO2 loading (63%, equivalent to an mMnO(2)/mCNF ratio of 1.7) at a maximal charge of 1.4 mA h cm(-2), while keeping the C.E. $ 95% over 300 cycles. The gravimetric capacity of the complete cathode is thus as high as 338 mA h gMnO(2+) CNF-1 (i.e., 534 mA h g(MnO2)(-1)), outperforming the current state-of-the-art cathodes based on conventional graphite/carbon felts as substrates (<30% MnO2 loading, <0.4 mMnO(2)/mCNF ratio and <150 mA h gMnO(2)+substrate(-1)) or composite electrodes. Furthermore, the buffered electrolyte allows for remarkably highly constant deposition-dissolution potentials with a low hysteresis (0.16 V). Pairing 3D electrospun CNFs (diameter # 200 nm) and mild aqueous buffered electrolytes is thus a striking approach towards the development of MnO2-based mild aqueous batteries with high energy efficiency.
引用
收藏
页码:1500 / 1506
页数:7
相关论文
共 36 条
[1]   Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes [J].
Babakhani, Banafsheh ;
Ivey, Douglas G. .
JOURNAL OF POWER SOURCES, 2011, 196 (24) :10762-10774
[2]   Revealing the Local pH Value Changes of Acidic Aqueous Zinc Ion Batteries with a Manganese Dioxide Electrode during Cycling [J].
Bischoff, Christian Friedrich ;
Fitz, Oliver Sebastian ;
Burns, Jordan ;
Bauer, Manuel ;
Gentischer, Harald ;
Birke, Kai Peter ;
Henning, Hans-Martin ;
Biro, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
[3]   Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors [J].
Chang, JK ;
Tsai, WT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1333-A1338
[4]   An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Ye, Chao ;
Zhang, Qinghua ;
Chen, Yungui ;
Gu, Lin ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7823-7828
[5]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[6]   Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films [J].
Chou, Shulei ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :727-734
[7]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[8]   H+-Insertion Boosted α-MnO2 for an Aqueous Zn-Ion Battery [J].
Gao, Xu ;
Wu, Hanwen ;
Li, Wenjie ;
Tian, Ye ;
Zhang, Yun ;
Wu, Hao ;
Yang, Li ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
SMALL, 2020, 16 (05)
[9]   Zn/MnO2 battery chemistry with dissolution-deposition mechanism [J].
Guo, Xun ;
Zhou, Jiang ;
Bai, Chaolei ;
Li, Xinkuo ;
Fang, Guozhao ;
Liang, Shuquan .
MATERIALS TODAY ENERGY, 2020, 16
[10]   Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers [J].
Gupta, Ashish ;
Dhakate, Sanjay R. ;
Pal, Prabir ;
Dey, Anamika ;
Iyer, Parameswar K. ;
Singh, Dilip K. .
DIAMOND AND RELATED MATERIALS, 2017, 78 :31-38