Random bit multilevel algorithms for stochastic differential equations

被引:5
作者
Giles, Michael B. [1 ]
Hefter, Mario [2 ]
Mayer, Lukas [2 ]
Ritter, Klaus [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford 0X2 6GG, England
[2] Tech Univ Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
基金
英国工程与自然科学研究理事会;
关键词
Random bits; Multilevel Monte Carlo algorithms; Stochastic differential equations; RESTRICTED MONTE-CARLO; APPROXIMATION; INTEGRATION; ERROR;
D O I
10.1016/j.jco.2019.01.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the approximation of expectations E(f(X)) for solutions X of SDEs and functionals f: C([0, 1], R-r) -> R by means of restricted Monte Carlo algorithms that may only use random bits instead of random numbers. We consider the worst case setting for functionals f from the Lipschitz class w.r.t. the supremum norm. We construct a random bit multilevel Euler algorithm and establish upper bounds for its error and cost. Furthermore, we derive matching lower bounds, up to a logarithmic factor, that are valid for all random bit Monte Carlo algorithms, and we show that, for the given quadrature problem, random bit Monte Carlo algorithms are at least almost as powerful as general randomized algorithms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
[41]   On symmetries of stochastic differential equations [J].
Kozlov, Roman .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) :4947-4951
[42]   On solving stochastic differential equations [J].
Ermakov, Sergej M. ;
Pogosian, Anna A. .
MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (02) :155-161
[43]   On Free Stochastic Differential Equations [J].
Kargin, Vladislav .
JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (03) :821-848
[44]   On Free Stochastic Differential Equations [J].
Vladislav Kargin .
Journal of Theoretical Probability, 2011, 24 :821-848
[45]   Stochastic Finite Element Methods with the Euclidean Degree for Partial Differential Equations with Random Inputs [J].
Huang, Qiong ;
Li, Ke ;
Wang, Cuanjie ;
Liao, Qifeng ;
Du, Xin .
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, :634-640
[46]   Existence and Ulam-Hyers-Rassias Stability of Stochastic Differential Equations with Random Impulses [J].
Lang, Wenxuan ;
Deng, Sufang ;
Shu, Xiao-Bao ;
Xu, Fei .
FILOMAT, 2021, 35 (02) :399-407
[47]   Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations Introduction [J].
Bou-Rabee, Nawaf ;
Vanden-Eijnden, Eric .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 256 (1228) :1-+
[48]   Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion [J].
Maud Delattre ;
Valentine Genon-Catalot ;
Catherine Larédo .
Metrika, 2018, 81 :953-983
[49]   Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion [J].
Delattre, Maud ;
Genon-Catalot, Valentine ;
Laredo, Catherine .
METRIKA, 2018, 81 (08) :953-983
[50]   WEAK CONVERGENCE OF A NUMERICAL SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Aguilera, Esteban ;
Fierro, Raul .
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (01) :201-215