ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES

被引:4
|
作者
Ciliberto, C. [1 ]
Dedieu, Th. [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219,UPS,IMT, F-31062 Toulouse 9, France
基金
欧盟地平线“2020”;
关键词
RATIONAL CURVES; EQUISINGULAR FAMILIES; PARAMETER SPACES; DIVISORS;
D O I
10.1090/proc/14559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a polarized K3 surface of genus p >= 11 such that Pic(S) = Z[L] and delta is a non-negative integer. We prove that if p >= 4 delta - 3, then the Severi variety of delta-nodal curves in vertical bar L vertical bar is irreducible.
引用
收藏
页码:4233 / 4244
页数:12
相关论文
共 50 条
  • [31] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [32] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [33] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [34] SUPERSINGULAR K3 SURFACES
    ARTIN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1974, 7 (04): : 543 - 567
  • [35] On normal K3 surfaces
    Shimada, Ichiro
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 395 - 416
  • [36] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [37] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182
  • [38] Zariski K3 surfaces
    Katsura, Toshiyuki
    Schuett, Matthias
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 869 - 894
  • [39] CURVES ON K3 SURFACES
    Chen, Xi
    Gounelas, Frank
    Liedtke, Christian
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (16) : 3283 - 3362
  • [40] Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties
    Atsushi Ito
    Makoto Miura
    Shinnosuke Okawa
    Kazushi Ueda
    Selecta Mathematica, 2020, 26