ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES

被引:4
|
作者
Ciliberto, C. [1 ]
Dedieu, Th. [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219,UPS,IMT, F-31062 Toulouse 9, France
基金
欧盟地平线“2020”;
关键词
RATIONAL CURVES; EQUISINGULAR FAMILIES; PARAMETER SPACES; DIVISORS;
D O I
10.1090/proc/14559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a polarized K3 surface of genus p >= 11 such that Pic(S) = Z[L] and delta is a non-negative integer. We prove that if p >= 4 delta - 3, then the Severi variety of delta-nodal curves in vertical bar L vertical bar is irreducible.
引用
收藏
页码:4233 / 4244
页数:12
相关论文
共 50 条
  • [21] FINITENESS THEOREM FOR THE BRAUER GROUP OF ABELIAN VARIETIES AND K3 SURFACES
    Skorobogatov, Alexei N.
    Zarhin, Yuri G.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (03) : 481 - 502
  • [22] Real Multiplication on K3 Surfaces and Kuga-Satake Varieties
    van Geemen, Bert
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (02) : 375 - 399
  • [23] Shimura curve computations via K3 surfaces of Neron-Severi rank at least 19
    Elkies, Noam D.
    ALGORITHMIC NUMBER THEORY, 2008, 5011 : 196 - 211
  • [24] Nonemptiness of severi varieties on enriques surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Galati, Concettina
    Knutsen, Andreas Leopold
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [25] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [26] K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds
    Iliev, A
    Ranestad, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (04) : 1455 - 1468
  • [27] Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic
    Rizov, Jordan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 648 : 13 - 67
  • [28] Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties
    Arbarello, E.
    Sacca, G.
    ADVANCES IN MATHEMATICS, 2018, 329 : 649 - 703
  • [29] NESTED VARIETIES OF K3 TYPE
    Bernardara, Marcello
    Fatighenti, Enrico
    Manivel, Laurent
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 733 - 778
  • [30] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223