ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES

被引:4
|
作者
Ciliberto, C. [1 ]
Dedieu, Th. [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219,UPS,IMT, F-31062 Toulouse 9, France
基金
欧盟地平线“2020”;
关键词
RATIONAL CURVES; EQUISINGULAR FAMILIES; PARAMETER SPACES; DIVISORS;
D O I
10.1090/proc/14559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a polarized K3 surface of genus p >= 11 such that Pic(S) = Z[L] and delta is a non-negative integer. We prove that if p >= 4 delta - 3, then the Severi variety of delta-nodal curves in vertical bar L vertical bar is irreducible.
引用
收藏
页码:4233 / 4244
页数:12
相关论文
共 50 条