Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection

被引:12
作者
Basiri, Reza [1 ,2 ]
Popovic, Milos R. [1 ,2 ]
Khan, Shehroz S. [1 ,2 ]
机构
[1] Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada
[2] Univ Hlth Network, Toronto Rehabil Inst, KITE, Toronto, ON, Canada
来源
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW | 2022年
关键词
Diabetic Foot Ulcer; EfficientNet; UNet; Object Detection; Feature Extractor; PREVALENCE;
D O I
10.1109/ICDMW58026.2022.00041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.
引用
收藏
页码:243 / 247
页数:5
相关论文
共 45 条
[1]  
[Anonymous], 2016, PROC CVPR IEEE
[2]   2005: The International Diabetes Federation focuses on the diabetic foot [J].
Bakker K. ;
van Houtum W.H. ;
Riley P.C. .
Current Diabetes Reports, 2005, 5 (6) :436-440
[3]  
Basiri R., 2019, J Am Podiatr Med Assoc
[4]   Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice [J].
Bertels, Jeroen ;
Eelbode, Tom ;
Berman, Maxim ;
Vandermeulen, Dirk ;
Maes, Frederik ;
Bisschops, Raf ;
Blaschko, Matthew B. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :92-100
[5]  
Cassidy B., DFUC2020: Analysis Towards Diabetic Foot Ulcer Detection
[6]  
Cassidy Bill, 2021, touchREV Endocrinol, V17, P5, DOI 10.17925/EE.2021.17.1.5
[7]  
Chai J., 2021, Machine Learning with Applications, V6
[8]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848