Smart ring resonator-based sensor for multicomponent chemical analysis via machine learning

被引:30
作者
Li, Zhenyu [1 ,2 ]
Zhang, Hui [2 ]
Binh Thi Thanh Nguyen [2 ]
Luo, Shaobo [2 ]
Liu, Patricia Yang [2 ]
Zou, Jun [2 ]
Shi, Yuzhi [2 ]
Cai, Hong [3 ]
Yang, Zhenchuan [1 ]
Jin, Yufeng [1 ]
Hao, Yilong [1 ]
Zhang, Yi [2 ,4 ]
Liu, Ai-Qun [2 ]
机构
[1] Peking Univ, Inst Microelect, Natl Key Lab Sci & Technol Micro Nano Fabricat, Beijing 100871, Peoples R China
[2] Nanyang Technol Univ, Quantum Sci & Engn Ctr, Singapore 639798, Singapore
[3] ASTAR, Inst Microelect, Singapore 138634, Singapore
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
LEAST-SQUARES REGRESSION;
D O I
10.1364/PRJ.411825
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a smart sensor for label-free multicomponent chemical analysis using a single label-free ring resonator to acquire the entire resonant spectrum of the mixture and a neural network model to predict the composition for multicomponent analysis. The smart sensor shows a high prediction accuracy with a low rootmean-squared error ranging only from 0.13 to 2.28 mg/mL. The predicted concentrations of each component in the testing dataset almost all fall within the 95% prediction bands. With its simple label-free detection strategy and high accuracy, the smart sensor promises great potential for multicomponent analysis applications in many fields. (C) 2021 Chinese Laser Press
引用
收藏
页码:B38 / B44
页数:7
相关论文
共 40 条
  • [11] Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip
    Feng, Xueling
    Zhang, Gong
    Chin, Lip Ket
    Liu, Ai Qun
    Liedberg, Bo
    [J]. ACS SENSORS, 2017, 2 (07): : 955 - 960
  • [12] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [13] PCR-Free, Multiplexed Expression Profiling of microRNAs Using Silicon Photonic Microring Resonators
    Graybill, Richard M.
    Para, Christopher S.
    Bailey, Ryan C.
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (21) : 10347 - 10351
  • [14] Prediction Network of Metamaterial with Split Ring Resonator Based on Deep Learning
    Hou, Zheyu
    Tang, Tingting
    Shen, Jian
    Li, Chaoyang
    Li, Fuyu
    [J]. NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [15] Shifts in plasmon resonance due to charging of a nanodisk array in argon plasma
    Lapsley, Michael Ian
    Shahravan, Anaram
    Hao, Qingzhen
    Juluri, Bala Krishna
    Giardinelli, Stephen
    Lu, Mengqian
    Zhao, Yanhui
    Chiang, I-Kao
    Matsoukas, Themis
    Huang, Tony Jun
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [16] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [17] Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients
    Li, Qifeng
    Zhang, Hui
    Yu, Liang
    Wu, Chao
    Luo, Xinhui
    Sun, He
    Ding, Jianbing
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2018, 54 : 24 - 32
  • [18] Biotoxoid Photonic Sensors with Temperature Insensitivity Using a Cascade of Ring Resonator and Mach-Zehnder Interferometer
    Li, Zhenyu
    Zou, Jun
    Zhu, Huihui
    Binh Thi Thanh Nguyen
    Shi, Yuzhi
    Liu, Patricia Yang
    Bailey, Ryan C.
    Zhou, Jin
    Wang, Hong
    Yang, Zhenchuan
    Jin, Yufeng
    Yap, Peng Huat
    Cai, Hong
    Hao, Yilong
    Liu, Ai Qun
    [J]. ACS SENSORS, 2020, 5 (08) : 2448 - 2456
  • [19] Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials
    Ma, Wei
    Cheng, Feng
    Liu, Yongmin
    [J]. ACS NANO, 2018, 12 (06) : 6326 - 6334
  • [20] The pls package: Principal component and partial least squares regression in R
    Mevik, Bjorn-Helge
    Wehrens, Ron
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2007, 18 (02): : 1 - 23