Metrics induced by Jensen-Shannon and related divergences on positive definite matrices

被引:19
作者
Sra, Suvrit [1 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
关键词
Jensen-Shannon divergence; Jensen-Renyi divergence; Quantum information theory; Triangle inequality; Positive definite matrices;
D O I
10.1016/j.laa.2020.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study metric properties of symmetric divergences on Hermitian positive definite matrices. In particular, we prove that the square root of these divergences is a distance metric. As a corollary we obtain a proof of the metric property for Quantum Jensen-Shannon-(Tsallis) divergences (parameterized by alpha is an element of [0, 2]). When specialized to alpha = 1, we obtain as a corollary a proof of the metric property of the Quantum Jensen-Shannon divergence that was conjectured by Lamberti et al. (2008) [13], and recently also proved by Virosztek (2019) [28]. A more intricate argument also establishes metric properties of Jensen-Renyi divergences (for alpha is an element of (0, 1)); this argument develops a technique that may be of independent interest. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 31 条
  • [11] Fuglede B, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P31
  • [12] Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods
    Harandi, Mehrtash
    Salzmann, Mathieu
    Hartley, Richard
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (01) : 48 - 62
  • [13] Kulis B, 2009, J MACH LEARN RES, V10, P341
  • [14] Metric character of the quantum Jensen-Shannon divergence
    Lamberti, P. W.
    Majtey, A. R.
    Borras, A.
    Casas, M.
    Plastino, A.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [15] DIVERGENCE MEASURES BASED ON THE SHANNON ENTROPY
    LIN, JH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) : 145 - 151
  • [16] On quantum Renyi entropies: A new generalization and some properties
    Mueller-Lennert, Martin
    Dupuis, Frederic
    Szehr, Oleg
    Fehr, Serge
    Tomamichel, Marco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [17] The Burbea-Rao and Bhattacharyya Centroids
    Nielsen, Frank
    Boltz, Sylvain
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5455 - 5466
  • [18] Nielsen M. A., 2009, Quantum Computation and Quantum Information
  • [19] Petz D., 1986, Reports on Mathematical Physics, V23, P57, DOI 10.1016/0034-4877(86)90067-4
  • [20] Characterizing graph symmetries through quantum Jensen-Shannon divergence
    Rossi, Luca
    Torsello, Andrea
    Hancock, Edwin R.
    Wilson, Richard C.
    [J]. PHYSICAL REVIEW E, 2013, 88 (03)