WHEN IS THE UNDERLYING SPACE OF AN ORBIFOLD A MANIFOLD?

被引:7
作者
Lange, Christian [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
关键词
FINITE-GROUPS;
D O I
10.1090/tran/7687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify orthogonal actions of finite groups on Euclidean vector spaces for which the corresponding quotient space is a topological, homological, or Lipschitz manifold, possibly with boundary. In particular, our results answer the question of when the underlying space of an orbifold is a manifold.
引用
收藏
页码:2799 / 2828
页数:30
相关论文
共 48 条
[1]  
Adem Alejandro, 1994, COHOMOLOGY FINITE GR, V309
[2]  
[Anonymous], 1977, GRADUATE TEXTS MATH, DOI DOI 10.1007/978-1-4684-9458-7.877
[3]  
[Anonymous], 1979, PRINCETON LECT NOTES
[4]  
Artin E., 1968, CLASS FIELD THEORY
[5]  
Bredon Glen E., 1972, PURE APPL MATH, V46
[6]  
BRIDSON M. R., 1999, METRIC SPACES NONPOS, V319, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[7]  
Brown K. S., 1994, Cohomology of groups, V87
[8]   The number of nets of the regular convex polytopes in dimension≤4 [J].
Buekenhout, F ;
Parker, M .
DISCRETE MATHEMATICS, 1998, 186 (1-3) :69-94
[9]  
Burago D., 2001, CRM P LECT NOTES, V33, DOI 10.1090/gsm/033
[10]   ALEXANDROV,A.D. SPACES WITH CURVATURE BOUNDED BELOW [J].
BURAGO, Y ;
GROMOV, M ;
PERELMAN, G .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (02) :1-58