Navier-Stokes equation in super-critical spaces Ep,qs

被引:10
作者
Feichtinger, Hans G. [1 ]
Groechenig, Karlheinz [1 ]
Li, Kuijie [2 ]
Wang, Baoxiang [3 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2021年 / 38卷 / 01期
基金
中国博士后科学基金;
关键词
Navier-Stokes equation; Modulation spaces; Negative exponential weight; Global well-posedness; UNIMODULAR FOURIER MULTIPLIERS; GELFAND-SHILOV SPACES; MODULATION SPACES; ILL-POSEDNESS; OPERATORS; ANALYTICITY; TRANSFORM; THEOREMS;
D O I
10.1016/j.anihpc.2020.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a new way to study the global existence and uniqueness for the Navier-Stokes equation (NS) and consider the initial data in a class of modulation spaces E-p(,q)s with exponentially decaying weights (s < 0, 1 < p, q < infinity) for which the norms are defined by parallel to f parallel to E-p,q(s )= (Sigma(k is an element of Zd)2(s vertical bar k vertical bar q)parallel to F-1 chi(k+[0,1])dFf parallel to(q)(p))(1/q) The space E-p,(q)s is a rather rough function space and cannot be treated as a subspace of tempered distributions. For example, we have the embedding H-sigma subset of E-2,(1)s for any sigma < 0 and s < 0. It is known that H-sigma (sigma < d/2 - 1) is a super-critical space of NS, it follows that E-2,(1)s (s < 0) is also super-critical for NS. We show that NS has a unique global mild solution if the initial data belong to E-2,(1)s (s < 0) and their Fourier transforms are supported in R-I(d) := {xi is an element of R-d : xi(i) >= 0, i = 1, ..., d}. Similar results hold for the initial data in E-r,(1)s with 2 < r <= d. Our results imply that NS has a unique global solution if the initial value up is in L-2 with supp (u) over cap0 subset of R-I(d) (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 173
页数:35
相关论文
共 66 条
[1]  
[Anonymous], 1968, SPACES FUNDAMENTAL G
[2]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[5]  
Bergh J., 1976, INTERPOLATION SPACES
[6]   LINEAR PARTIAL DIFFERENTIAL OPERATORS AND GENERALIZED DISTRIBUTIONS [J].
BJORCK, G .
ARKIV FOR MATEMATIK, 1966, 6 (4-5) :351-&
[7]  
Bonami A, 2003, REV MAT IBEROAM, V19, P23
[8]   Ill-posedness of the Navier-Stokes equations in a critical space in 3D [J].
Bourgain, Jean ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2233-2247
[9]  
C?rdoba A., 1978, COMMUN PART DIFF EQ, V3, P979
[10]   Self-similar solutions for Navier-Stokes equations in R(3) [J].
Cannone, M ;
Planchon, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :179-193